奇异非线性非齐次椭圆方程的多重性结果

R. Arora
{"title":"奇异非线性非齐次椭圆方程的多重性结果","authors":"R. Arora","doi":"10.3934/cpaa.2022056","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper is concerned with the study of multiple positive solutions to the following elliptic problem involving a nonhomogeneous operator with nonstandard growth of <inline-formula><tex-math id=\"M1\">\\begin{document}$ p $\\end{document}</tex-math></inline-formula>-<inline-formula><tex-math id=\"M2\">\\begin{document}$ q $\\end{document}</tex-math></inline-formula> type and singular nonlinearities</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\left\\{ \\begin{alignedat}{2} {} - \\mathcal{L}_{p,q} u & {} = \\lambda \\frac{f(u)}{u^\\gamma}, \\ u>0 && \\quad\\mbox{ in } \\, \\Omega, \\\\ u & {} = 0 && \\quad\\mbox{ on } \\partial\\Omega, \\end{alignedat} \\right. $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\Omega $\\end{document}</tex-math></inline-formula> is a bounded domain in <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\mathbb{R}^N $\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\"M5\">\\begin{document}$ C^2 $\\end{document}</tex-math></inline-formula> boundary, <inline-formula><tex-math id=\"M6\">\\begin{document}$ N \\geq 1 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\lambda >0 $\\end{document}</tex-math></inline-formula> is a real parameter,</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE2\"> \\begin{document}$ \\mathcal{L}_{p,q} u : = {\\rm{div}}(|\\nabla u|^{p-2} \\nabla u + |\\nabla u|^{q-2} \\nabla u), $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><inline-formula><tex-math id=\"M8\">\\begin{document}$ 1<p<q< \\infty $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\gamma \\in (0,1) $\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\"M10\">\\begin{document}$ f $\\end{document}</tex-math></inline-formula> is a continuous nondecreasing map satisfying suitable conditions. By constructing two distinctive pairs of strict sub and super solution, and using fixed point theorems by Amann [<xref ref-type=\"bibr\" rid=\"b1\">1</xref>], we prove existence of three positive solutions in the positive cone of <inline-formula><tex-math id=\"M11\">\\begin{document}$ C_\\delta(\\overline{\\Omega}) $\\end{document}</tex-math></inline-formula> and in a certain range of <inline-formula><tex-math id=\"M12\">\\begin{document}$ \\lambda $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities\",\"authors\":\"R. Arora\",\"doi\":\"10.3934/cpaa.2022056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>This paper is concerned with the study of multiple positive solutions to the following elliptic problem involving a nonhomogeneous operator with nonstandard growth of <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ p $\\\\end{document}</tex-math></inline-formula>-<inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ q $\\\\end{document}</tex-math></inline-formula> type and singular nonlinearities</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\left\\\\{ \\\\begin{alignedat}{2} {} - \\\\mathcal{L}_{p,q} u & {} = \\\\lambda \\\\frac{f(u)}{u^\\\\gamma}, \\\\ u>0 && \\\\quad\\\\mbox{ in } \\\\, \\\\Omega, \\\\\\\\ u & {} = 0 && \\\\quad\\\\mbox{ on } \\\\partial\\\\Omega, \\\\end{alignedat} \\\\right. $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\Omega $\\\\end{document}</tex-math></inline-formula> is a bounded domain in <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\mathbb{R}^N $\\\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ C^2 $\\\\end{document}</tex-math></inline-formula> boundary, <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ N \\\\geq 1 $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\lambda >0 $\\\\end{document}</tex-math></inline-formula> is a real parameter,</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE2\\\"> \\\\begin{document}$ \\\\mathcal{L}_{p,q} u : = {\\\\rm{div}}(|\\\\nabla u|^{p-2} \\\\nabla u + |\\\\nabla u|^{q-2} \\\\nabla u), $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ 1<p<q< \\\\infty $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ \\\\gamma \\\\in (0,1) $\\\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ f $\\\\end{document}</tex-math></inline-formula> is a continuous nondecreasing map satisfying suitable conditions. By constructing two distinctive pairs of strict sub and super solution, and using fixed point theorems by Amann [<xref ref-type=\\\"bibr\\\" rid=\\\"b1\\\">1</xref>], we prove existence of three positive solutions in the positive cone of <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ C_\\\\delta(\\\\overline{\\\\Omega}) $\\\\end{document}</tex-math></inline-formula> and in a certain range of <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ \\\\lambda $\\\\end{document}</tex-math></inline-formula>.</p>\",\"PeriodicalId\":435074,\"journal\":{\"name\":\"Communications on Pure &amp; Applied Analysis\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure &amp; Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2022056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure &amp; Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文涉及的研究多个正解如下椭圆问题涉及非齐次与非标准增长运营商\开始{文档}$ p $ \{文档}-{文档}\开始结束问美元\}{文档类型和奇异非线性\开始{文档}$ \左\{\开始{alignedat} {2} {} - \ mathcal {L} _ {p, q} u &{} = \λ\压裂{f (u)}{你^ \伽马},\ u > 0 & & \四\ mbox的{}\,\ω\ \ u &{} = 0 & & \四\ mbox{在}\部分\ω,\ {alignedat} \正确的结束。$\end{document}其中$\ begin{document}$ \Omega $\end{document}是\begin{document}$ \mathbb{R}^N $\end{document}与\begin{document}$ C^2 $\end{document}边界中的有界域,\begin{document}$ N \geq 1 $\end{document}, \begin{document}$ \lambda >0 $\end{document}是实参数,\begin{document}$ \mathcal{L}_{p,q} u:= {\rm{div}}(|\nabla u|^{p-2} \nabla u + |\nabla u|^{q-2} \nabla u), $\end{document} \begin{document}$ 1, \begin{document}$ \gamma \in (0,1) $\end{document},和\begin{document}$ f $\end{document}是满足适当条件的连续非递减映射。利用Amann[1]的不动点定理,构造了严格下解和上解的两个不同对,证明了在\begin{document}$ C_\delta(\overline{\Omega}) $\end{document}的正锥和\begin{document}$ \lambda $\end{document}的一定范围内存在三个正解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities

This paper is concerned with the study of multiple positive solutions to the following elliptic problem involving a nonhomogeneous operator with nonstandard growth of \begin{document}$ p $\end{document}-\begin{document}$ q $\end{document} type and singular nonlinearities

where \begin{document}$ \Omega $\end{document} is a bounded domain in \begin{document}$ \mathbb{R}^N $\end{document} with \begin{document}$ C^2 $\end{document} boundary, \begin{document}$ N \geq 1 $\end{document}, \begin{document}$ \lambda >0 $\end{document} is a real parameter,

\begin{document}$ 1, \begin{document}$ \gamma \in (0,1) $\end{document}, and \begin{document}$ f $\end{document} is a continuous nondecreasing map satisfying suitable conditions. By constructing two distinctive pairs of strict sub and super solution, and using fixed point theorems by Amann [1], we prove existence of three positive solutions in the positive cone of \begin{document}$ C_\delta(\overline{\Omega}) $\end{document} and in a certain range of \begin{document}$ \lambda $\end{document}.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信