{"title":"奇异非线性非齐次椭圆方程的多重性结果","authors":"R. Arora","doi":"10.3934/cpaa.2022056","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper is concerned with the study of multiple positive solutions to the following elliptic problem involving a nonhomogeneous operator with nonstandard growth of <inline-formula><tex-math id=\"M1\">\\begin{document}$ p $\\end{document}</tex-math></inline-formula>-<inline-formula><tex-math id=\"M2\">\\begin{document}$ q $\\end{document}</tex-math></inline-formula> type and singular nonlinearities</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\left\\{ \\begin{alignedat}{2} {} - \\mathcal{L}_{p,q} u & {} = \\lambda \\frac{f(u)}{u^\\gamma}, \\ u>0 && \\quad\\mbox{ in } \\, \\Omega, \\\\ u & {} = 0 && \\quad\\mbox{ on } \\partial\\Omega, \\end{alignedat} \\right. $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\Omega $\\end{document}</tex-math></inline-formula> is a bounded domain in <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\mathbb{R}^N $\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\"M5\">\\begin{document}$ C^2 $\\end{document}</tex-math></inline-formula> boundary, <inline-formula><tex-math id=\"M6\">\\begin{document}$ N \\geq 1 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\lambda >0 $\\end{document}</tex-math></inline-formula> is a real parameter,</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE2\"> \\begin{document}$ \\mathcal{L}_{p,q} u : = {\\rm{div}}(|\\nabla u|^{p-2} \\nabla u + |\\nabla u|^{q-2} \\nabla u), $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><inline-formula><tex-math id=\"M8\">\\begin{document}$ 1<p<q< \\infty $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\gamma \\in (0,1) $\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\"M10\">\\begin{document}$ f $\\end{document}</tex-math></inline-formula> is a continuous nondecreasing map satisfying suitable conditions. By constructing two distinctive pairs of strict sub and super solution, and using fixed point theorems by Amann [<xref ref-type=\"bibr\" rid=\"b1\">1</xref>], we prove existence of three positive solutions in the positive cone of <inline-formula><tex-math id=\"M11\">\\begin{document}$ C_\\delta(\\overline{\\Omega}) $\\end{document}</tex-math></inline-formula> and in a certain range of <inline-formula><tex-math id=\"M12\">\\begin{document}$ \\lambda $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities\",\"authors\":\"R. Arora\",\"doi\":\"10.3934/cpaa.2022056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>This paper is concerned with the study of multiple positive solutions to the following elliptic problem involving a nonhomogeneous operator with nonstandard growth of <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ p $\\\\end{document}</tex-math></inline-formula>-<inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ q $\\\\end{document}</tex-math></inline-formula> type and singular nonlinearities</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\left\\\\{ \\\\begin{alignedat}{2} {} - \\\\mathcal{L}_{p,q} u & {} = \\\\lambda \\\\frac{f(u)}{u^\\\\gamma}, \\\\ u>0 && \\\\quad\\\\mbox{ in } \\\\, \\\\Omega, \\\\\\\\ u & {} = 0 && \\\\quad\\\\mbox{ on } \\\\partial\\\\Omega, \\\\end{alignedat} \\\\right. $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\Omega $\\\\end{document}</tex-math></inline-formula> is a bounded domain in <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\mathbb{R}^N $\\\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ C^2 $\\\\end{document}</tex-math></inline-formula> boundary, <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ N \\\\geq 1 $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\lambda >0 $\\\\end{document}</tex-math></inline-formula> is a real parameter,</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE2\\\"> \\\\begin{document}$ \\\\mathcal{L}_{p,q} u : = {\\\\rm{div}}(|\\\\nabla u|^{p-2} \\\\nabla u + |\\\\nabla u|^{q-2} \\\\nabla u), $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ 1<p<q< \\\\infty $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ \\\\gamma \\\\in (0,1) $\\\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ f $\\\\end{document}</tex-math></inline-formula> is a continuous nondecreasing map satisfying suitable conditions. By constructing two distinctive pairs of strict sub and super solution, and using fixed point theorems by Amann [<xref ref-type=\\\"bibr\\\" rid=\\\"b1\\\">1</xref>], we prove existence of three positive solutions in the positive cone of <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ C_\\\\delta(\\\\overline{\\\\Omega}) $\\\\end{document}</tex-math></inline-formula> and in a certain range of <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ \\\\lambda $\\\\end{document}</tex-math></inline-formula>.</p>\",\"PeriodicalId\":435074,\"journal\":{\"name\":\"Communications on Pure & Applied Analysis\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure & Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2022056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities
This paper is concerned with the study of multiple positive solutions to the following elliptic problem involving a nonhomogeneous operator with nonstandard growth of \begin{document}$ p $\end{document}-\begin{document}$ q $\end{document} type and singular nonlinearities
\begin{document}$ \left\{ \begin{alignedat}{2} {} - \mathcal{L}_{p,q} u & {} = \lambda \frac{f(u)}{u^\gamma}, \ u>0 && \quad\mbox{ in } \, \Omega, \\ u & {} = 0 && \quad\mbox{ on } \partial\Omega, \end{alignedat} \right. $\end{document}
where \begin{document}$ \Omega $\end{document} is a bounded domain in \begin{document}$ \mathbb{R}^N $\end{document} with \begin{document}$ C^2 $\end{document} boundary, \begin{document}$ N \geq 1 $\end{document}, \begin{document}$ \lambda >0 $\end{document} is a real parameter,
\begin{document}$ \mathcal{L}_{p,q} u : = {\rm{div}}(|\nabla u|^{p-2} \nabla u + |\nabla u|^{q-2} \nabla u), $\end{document}
\begin{document}$ 1, \begin{document}$ \gamma \in (0,1) $\end{document}, and \begin{document}$ f $\end{document} is a continuous nondecreasing map satisfying suitable conditions. By constructing two distinctive pairs of strict sub and super solution, and using fixed point theorems by Amann [1], we prove existence of three positive solutions in the positive cone of \begin{document}$ C_\delta(\overline{\Omega}) $\end{document} and in a certain range of \begin{document}$ \lambda $\end{document}.