基于性别遗传算法的高斯波段光谱轮廓分解

S. Dolenko, Gavriil Kupriyanov, I. Isaev, I. Plastinin, T. Dolenko
{"title":"基于性别遗传算法的高斯波段光谱轮廓分解","authors":"S. Dolenko, Gavriil Kupriyanov, I. Isaev, I. Plastinin, T. Dolenko","doi":"10.22323/1.429.0009","DOIUrl":null,"url":null,"abstract":"One of the methods for analysis of complex spectral contours (especially for spectra of liquid objects) is their decomposition into a limited number of spectral bands with physically reasonable shapes (Gaussian, Lorentzian, Voigt etc.). The problem with the required decomposition is that such decomposition is an inverse problem that is often ill-conditioned or even incorrect, especially in presence of noise in spectra. Therefore, this problem is often solved by advanced optimization methods less subject to be stuck in local minima, such as genetic algorithms (GA). In the conventional version of GA, all individuals are similar regarding the probabilities and implementation of the main genetic operators (crossover and mutation) and the procedure of selection. In this study, we test a new version of GA – gender GA (GGA), where the individuals of the two genders differ by the probability of mutation (higher for the male gender) and by the procedures of selection for crossover. In this study, we compare the efficiency of gradient descent and conventional GA and GGA followed by gradient descent from the found point in solving the problems of decomposition of the Raman valence band of liquid water into Gaussian shaped components.","PeriodicalId":262901,"journal":{"name":"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposition of Spectral Contour into Gaussian Bands using Gender Genetic Algorithm\",\"authors\":\"S. Dolenko, Gavriil Kupriyanov, I. Isaev, I. Plastinin, T. Dolenko\",\"doi\":\"10.22323/1.429.0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the methods for analysis of complex spectral contours (especially for spectra of liquid objects) is their decomposition into a limited number of spectral bands with physically reasonable shapes (Gaussian, Lorentzian, Voigt etc.). The problem with the required decomposition is that such decomposition is an inverse problem that is often ill-conditioned or even incorrect, especially in presence of noise in spectra. Therefore, this problem is often solved by advanced optimization methods less subject to be stuck in local minima, such as genetic algorithms (GA). In the conventional version of GA, all individuals are similar regarding the probabilities and implementation of the main genetic operators (crossover and mutation) and the procedure of selection. In this study, we test a new version of GA – gender GA (GGA), where the individuals of the two genders differ by the probability of mutation (higher for the male gender) and by the procedures of selection for crossover. In this study, we compare the efficiency of gradient descent and conventional GA and GGA followed by gradient descent from the found point in solving the problems of decomposition of the Raman valence band of liquid water into Gaussian shaped components.\",\"PeriodicalId\":262901,\"journal\":{\"name\":\"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.429.0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.429.0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析复杂光谱轮廓(特别是液体物体的光谱)的方法之一是将其分解为物理上合理形状的有限数量的光谱带(高斯、洛伦兹、沃伊特等)。所需分解的问题在于,这种分解是一个逆问题,通常是病态的,甚至是不正确的,特别是在光谱中存在噪声的情况下。因此,这一问题往往采用较先进的优化方法来解决,如遗传算法(GA),它不太容易陷入局部极小值。在遗传算法的传统版本中,所有个体在主要遗传算子(交叉和突变)的概率和实现以及选择过程方面都是相似的。在本研究中,我们测试了一种新的遗传算法——性别遗传算法(GGA),其中两种性别的个体在突变概率(男性更高)和交叉选择程序方面存在差异。在本研究中,我们比较了梯度下降法与传统遗传算法和从发现点开始梯度下降的GGA在解决液态水的拉曼价带分解成高斯形分量问题上的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposition of Spectral Contour into Gaussian Bands using Gender Genetic Algorithm
One of the methods for analysis of complex spectral contours (especially for spectra of liquid objects) is their decomposition into a limited number of spectral bands with physically reasonable shapes (Gaussian, Lorentzian, Voigt etc.). The problem with the required decomposition is that such decomposition is an inverse problem that is often ill-conditioned or even incorrect, especially in presence of noise in spectra. Therefore, this problem is often solved by advanced optimization methods less subject to be stuck in local minima, such as genetic algorithms (GA). In the conventional version of GA, all individuals are similar regarding the probabilities and implementation of the main genetic operators (crossover and mutation) and the procedure of selection. In this study, we test a new version of GA – gender GA (GGA), where the individuals of the two genders differ by the probability of mutation (higher for the male gender) and by the procedures of selection for crossover. In this study, we compare the efficiency of gradient descent and conventional GA and GGA followed by gradient descent from the found point in solving the problems of decomposition of the Raman valence band of liquid water into Gaussian shaped components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信