MUD CDMA中联合ML和ML符号信道估计器的近似

T. Fabricius, O. Nørklit
{"title":"MUD CDMA中联合ML和ML符号信道估计器的近似","authors":"T. Fabricius, O. Nørklit","doi":"10.1109/GLOCOM.2002.1188107","DOIUrl":null,"url":null,"abstract":"In this contribution we conceptually derive two symbol-channel estimators, the joint-ML and the ML, both having exponential complexity. Pragmatically we derive three approximations with polynomial complexity, one to the joint-ML: the pseudo-joint-ML; two to the ML: the naive-ML and the linear-response-ML. We assess the resulting average bit error rates empirically. Performance gains of several dB are observed from using the ML based approximations compared to the joint-ML.","PeriodicalId":415837,"journal":{"name":"Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Approximations to joint-ML and ML symbol-channel estimators in MUD CDMA\",\"authors\":\"T. Fabricius, O. Nørklit\",\"doi\":\"10.1109/GLOCOM.2002.1188107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution we conceptually derive two symbol-channel estimators, the joint-ML and the ML, both having exponential complexity. Pragmatically we derive three approximations with polynomial complexity, one to the joint-ML: the pseudo-joint-ML; two to the ML: the naive-ML and the linear-response-ML. We assess the resulting average bit error rates empirically. Performance gains of several dB are observed from using the ML based approximations compared to the joint-ML.\",\"PeriodicalId\":415837,\"journal\":{\"name\":\"Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2002.1188107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2002.1188107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在这个贡献中,我们从概念上推导了两个符号信道估计量,联合ML和ML,它们都具有指数复杂度。在实际应用中,我们导出了三种具有多项式复杂度的近似,一种是对联合- ml的近似:伪联合- ml;两种ML:原始ML和线性响应ML。我们根据经验评估所得的平均误码率。与联合ML相比,使用基于ML的近似可以观察到几个dB的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximations to joint-ML and ML symbol-channel estimators in MUD CDMA
In this contribution we conceptually derive two symbol-channel estimators, the joint-ML and the ML, both having exponential complexity. Pragmatically we derive three approximations with polynomial complexity, one to the joint-ML: the pseudo-joint-ML; two to the ML: the naive-ML and the linear-response-ML. We assess the resulting average bit error rates empirically. Performance gains of several dB are observed from using the ML based approximations compared to the joint-ML.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信