R. Prodan, Ennio Torre, J. Durillo, G. Aujla, Neeraj Kumar, H. M. Fard, S. Benedict
{"title":"云数据中心中的动态多目标虚拟机布局","authors":"R. Prodan, Ennio Torre, J. Durillo, G. Aujla, Neeraj Kumar, H. M. Fard, S. Benedict","doi":"10.1109/SEAA.2019.00023","DOIUrl":null,"url":null,"abstract":"Minimizing the resource wastage reduces the energy cost of operating a data center, but may also lead to a considerably high resource overcommitment affecting the Quality of Service (QoS) of the running applications. Determining the effective tradeoff between resource wastage and overcommitment is a challenging task in virtualized Cloud data centers and depends on how Virtual Machines (VMs) are allocated to physical resources. In this paper, we propose a multi-objective framework for dynamic placement of VMs exploiting live-migration mechanisms which simultaneously optimize the resource wastage, overcommitment ratio and migration cost. The optimization algorithm is based on a novel evolutionary meta-heuristic using an island population model underneath. We implemented and validated our method based on an enhanced version of a well-known simulator. The results demonstrate that our approach outperforms other related approaches by reducing up to 57% migrations energy consumption while achieving different energy and QoS goals.","PeriodicalId":272035,"journal":{"name":"2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic Multi-objective Virtual Machine Placement in Cloud Data Centers\",\"authors\":\"R. Prodan, Ennio Torre, J. Durillo, G. Aujla, Neeraj Kumar, H. M. Fard, S. Benedict\",\"doi\":\"10.1109/SEAA.2019.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Minimizing the resource wastage reduces the energy cost of operating a data center, but may also lead to a considerably high resource overcommitment affecting the Quality of Service (QoS) of the running applications. Determining the effective tradeoff between resource wastage and overcommitment is a challenging task in virtualized Cloud data centers and depends on how Virtual Machines (VMs) are allocated to physical resources. In this paper, we propose a multi-objective framework for dynamic placement of VMs exploiting live-migration mechanisms which simultaneously optimize the resource wastage, overcommitment ratio and migration cost. The optimization algorithm is based on a novel evolutionary meta-heuristic using an island population model underneath. We implemented and validated our method based on an enhanced version of a well-known simulator. The results demonstrate that our approach outperforms other related approaches by reducing up to 57% migrations energy consumption while achieving different energy and QoS goals.\",\"PeriodicalId\":272035,\"journal\":{\"name\":\"2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEAA.2019.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA.2019.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Multi-objective Virtual Machine Placement in Cloud Data Centers
Minimizing the resource wastage reduces the energy cost of operating a data center, but may also lead to a considerably high resource overcommitment affecting the Quality of Service (QoS) of the running applications. Determining the effective tradeoff between resource wastage and overcommitment is a challenging task in virtualized Cloud data centers and depends on how Virtual Machines (VMs) are allocated to physical resources. In this paper, we propose a multi-objective framework for dynamic placement of VMs exploiting live-migration mechanisms which simultaneously optimize the resource wastage, overcommitment ratio and migration cost. The optimization algorithm is based on a novel evolutionary meta-heuristic using an island population model underneath. We implemented and validated our method based on an enhanced version of a well-known simulator. The results demonstrate that our approach outperforms other related approaches by reducing up to 57% migrations energy consumption while achieving different energy and QoS goals.