基于rbf的位移和热误差补偿方法

K. Tan, Rui Yang, Poi Voon Er, A. Tay, C. Teo
{"title":"基于rbf的位移和热误差补偿方法","authors":"K. Tan, Rui Yang, Poi Voon Er, A. Tay, C. Teo","doi":"10.1109/ICMA.2013.6618058","DOIUrl":null,"url":null,"abstract":"With rapid development in the technologies of high precision machining and the ever increasing demand for high accuracy in the automation industry, addressing accuracy problems due to geometric and thermal errors are becoming more critical in recent years, especially thermal errors which may contribute up to 75% of the overall errors in the system. Retrofitting the mechanical design or maintaining the operational temperature may not be feasible and can significantly increase cost. An error compensation method is more efficient and cost effective. In this paper, a displacement and thermal error compensation approach is proposed and developed based on radial basis functions. Feedback control is designed in both position control subsystem and temperature control subsystem. Raw position data is measured using the laser interferometer and the raw temperature data is measured using a thermistor. The overall geometric errors are related to both movement positions and the machine operating temperatures, so a 2-D RBF network is designed and trained to model and estimate the geometric errors. The RBFs are then used to compensate the error. The experimental results showed that the proposed approach can help improve the system performance and accuracy effectively.","PeriodicalId":335884,"journal":{"name":"2013 IEEE International Conference on Mechatronics and Automation","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"RBF-based compensation method on displacement and thermal error\",\"authors\":\"K. Tan, Rui Yang, Poi Voon Er, A. Tay, C. Teo\",\"doi\":\"10.1109/ICMA.2013.6618058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With rapid development in the technologies of high precision machining and the ever increasing demand for high accuracy in the automation industry, addressing accuracy problems due to geometric and thermal errors are becoming more critical in recent years, especially thermal errors which may contribute up to 75% of the overall errors in the system. Retrofitting the mechanical design or maintaining the operational temperature may not be feasible and can significantly increase cost. An error compensation method is more efficient and cost effective. In this paper, a displacement and thermal error compensation approach is proposed and developed based on radial basis functions. Feedback control is designed in both position control subsystem and temperature control subsystem. Raw position data is measured using the laser interferometer and the raw temperature data is measured using a thermistor. The overall geometric errors are related to both movement positions and the machine operating temperatures, so a 2-D RBF network is designed and trained to model and estimate the geometric errors. The RBFs are then used to compensate the error. The experimental results showed that the proposed approach can help improve the system performance and accuracy effectively.\",\"PeriodicalId\":335884,\"journal\":{\"name\":\"2013 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2013.6618058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2013.6618058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,随着高精度加工技术的迅速发展和自动化行业对高精度要求的不断提高,解决几何误差和热误差引起的精度问题变得越来越重要,特别是热误差可能占系统总误差的75%。改造机械设计或维持工作温度可能不可行,并且会显著增加成本。误差补偿方法更有效,成本更低。提出并发展了一种基于径向基函数的位移和热误差补偿方法。在位置控制分系统和温度控制分系统中都设计了反馈控制。使用激光干涉仪测量原始位置数据,使用热敏电阻测量原始温度数据。整体几何误差与运动位置和机器工作温度有关,因此设计并训练了一个二维RBF网络来建模和估计几何误差。然后使用rbf来补偿误差。实验结果表明,该方法可以有效地提高系统的性能和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RBF-based compensation method on displacement and thermal error
With rapid development in the technologies of high precision machining and the ever increasing demand for high accuracy in the automation industry, addressing accuracy problems due to geometric and thermal errors are becoming more critical in recent years, especially thermal errors which may contribute up to 75% of the overall errors in the system. Retrofitting the mechanical design or maintaining the operational temperature may not be feasible and can significantly increase cost. An error compensation method is more efficient and cost effective. In this paper, a displacement and thermal error compensation approach is proposed and developed based on radial basis functions. Feedback control is designed in both position control subsystem and temperature control subsystem. Raw position data is measured using the laser interferometer and the raw temperature data is measured using a thermistor. The overall geometric errors are related to both movement positions and the machine operating temperatures, so a 2-D RBF network is designed and trained to model and estimate the geometric errors. The RBFs are then used to compensate the error. The experimental results showed that the proposed approach can help improve the system performance and accuracy effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信