形状插值与平坦

F. Meyer
{"title":"形状插值与平坦","authors":"F. Meyer","doi":"10.1109/ICPR.2010.514","DOIUrl":null,"url":null,"abstract":"This paper presents the binary flattenings of shapes, first as a connected operator suppressing particles or holes, second as an erosion in a particular lattice of shapes. Using this erosion, it is then possible to construct a distance from a shape to another and derive from it an interpolation function between shapes.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Shape Interpolation with Flattenings\",\"authors\":\"F. Meyer\",\"doi\":\"10.1109/ICPR.2010.514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the binary flattenings of shapes, first as a connected operator suppressing particles or holes, second as an erosion in a particular lattice of shapes. Using this erosion, it is then possible to construct a distance from a shape to another and derive from it an interpolation function between shapes.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了形状的二元平坦化,首先作为抑制粒子或空穴的连接算子,其次作为特定形状晶格中的侵蚀。利用这种侵蚀,就可以构造一个形状与另一个形状之间的距离,并从中推导出形状之间的插值函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape Interpolation with Flattenings
This paper presents the binary flattenings of shapes, first as a connected operator suppressing particles or holes, second as an erosion in a particular lattice of shapes. Using this erosion, it is then possible to construct a distance from a shape to another and derive from it an interpolation function between shapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信