具有大量局部最优的全局优化的一种新的局部搜索策略

Fei Wei, Shugang Li, Jinfeng Xue
{"title":"具有大量局部最优的全局优化的一种新的局部搜索策略","authors":"Fei Wei, Shugang Li, Jinfeng Xue","doi":"10.1109/CIS.2017.00057","DOIUrl":null,"url":null,"abstract":"For global optimization, because there are a lot of local optimal solutions in problems, differential evolution will face a huge challenge and the efficiency and effectiveness for most of them will be much reduced. In this paper, a new local searching method is proposed in designing a novel evolutionary algorithm for global optimization. Therefore, we construct a new algorithm called differential evolution with a new local searching for global optimization. The simulations are made on standard benchmark suite. The results indicate the proposed algorithm is more effective and efficient.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Local Searching Strategy for Global Optimization with a Large Number of Local Optimum\",\"authors\":\"Fei Wei, Shugang Li, Jinfeng Xue\",\"doi\":\"10.1109/CIS.2017.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For global optimization, because there are a lot of local optimal solutions in problems, differential evolution will face a huge challenge and the efficiency and effectiveness for most of them will be much reduced. In this paper, a new local searching method is proposed in designing a novel evolutionary algorithm for global optimization. Therefore, we construct a new algorithm called differential evolution with a new local searching for global optimization. The simulations are made on standard benchmark suite. The results indicate the proposed algorithm is more effective and efficient.\",\"PeriodicalId\":304958,\"journal\":{\"name\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2017.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于全局优化,由于问题中存在大量的局部最优解,差分进化将面临巨大的挑战,并且大多数算法的效率和有效性将大大降低。本文提出了一种新的局部搜索方法来设计一种新的全局优化进化算法。因此,我们构造了一种新的差分进化算法,用新的局部搜索方法寻求全局优化。在标准基准测试套件上进行了仿真。实验结果表明,该算法具有较高的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Local Searching Strategy for Global Optimization with a Large Number of Local Optimum
For global optimization, because there are a lot of local optimal solutions in problems, differential evolution will face a huge challenge and the efficiency and effectiveness for most of them will be much reduced. In this paper, a new local searching method is proposed in designing a novel evolutionary algorithm for global optimization. Therefore, we construct a new algorithm called differential evolution with a new local searching for global optimization. The simulations are made on standard benchmark suite. The results indicate the proposed algorithm is more effective and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信