导航中的概率活动识别

Octavi Font, Guillem Francès, Anders Jonsson, P. Bartie, W. Mackaness
{"title":"导航中的概率活动识别","authors":"Octavi Font, Guillem Francès, Anders Jonsson, P. Bartie, W. Mackaness","doi":"10.1109/WPNC.2014.6843309","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel probabilistic approach to activity recognition. Our approach is to estimate posterior probabilities of different activities using Bayes' rule. The approach can handle any type of activities as long as it is possible to estimate the conditional probabilities of potential observations, and easily scales to large numbers of activities. We test our approach empirically in an environment where observations are GPS signals of users moving around in a city.","PeriodicalId":106193,"journal":{"name":"2014 11th Workshop on Positioning, Navigation and Communication (WPNC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Probabilistic activity recognition in navigation\",\"authors\":\"Octavi Font, Guillem Francès, Anders Jonsson, P. Bartie, W. Mackaness\",\"doi\":\"10.1109/WPNC.2014.6843309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a novel probabilistic approach to activity recognition. Our approach is to estimate posterior probabilities of different activities using Bayes' rule. The approach can handle any type of activities as long as it is possible to estimate the conditional probabilities of potential observations, and easily scales to large numbers of activities. We test our approach empirically in an environment where observations are GPS signals of users moving around in a city.\",\"PeriodicalId\":106193,\"journal\":{\"name\":\"2014 11th Workshop on Positioning, Navigation and Communication (WPNC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th Workshop on Positioning, Navigation and Communication (WPNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPNC.2014.6843309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th Workshop on Positioning, Navigation and Communication (WPNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2014.6843309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的概率活动识别方法。我们的方法是使用贝叶斯规则估计不同活动的后验概率。该方法可以处理任何类型的活动,只要有可能估计潜在观察的条件概率,并且很容易扩展到大量的活动。我们在一个环境中对我们的方法进行了实证测试,在这个环境中,观察结果是用户在城市中移动的GPS信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic activity recognition in navigation
In this paper we present a novel probabilistic approach to activity recognition. Our approach is to estimate posterior probabilities of different activities using Bayes' rule. The approach can handle any type of activities as long as it is possible to estimate the conditional probabilities of potential observations, and easily scales to large numbers of activities. We test our approach empirically in an environment where observations are GPS signals of users moving around in a city.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信