半合成数据集作为大数据语义分析测试平台的开发

R. Techentin, D. Foti, Peter W. Li, E. Daniel, B. Gilbert, D. Holmes, Sinan Al-Saffar
{"title":"半合成数据集作为大数据语义分析测试平台的开发","authors":"R. Techentin, D. Foti, Peter W. Li, E. Daniel, B. Gilbert, D. Holmes, Sinan Al-Saffar","doi":"10.1109/ICSC.2014.45","DOIUrl":null,"url":null,"abstract":"We have developed a large semi-synthetic, semantically rich dataset, modeled after the medical record of a large medical institution. Using the highly diverse data.gov data repository and a multivariate data augmentation strategy, we can generate arbitrarily large semi-synthetic datasets which can be used to test new algorithms and computational platforms. The construction process and basic data characterization are described. The databases, as well as code for data collection, consolidation, and augmentation are available for distribution.","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Development of a Semi-synthetic Dataset as a Testbed for Big-Data Semantic Analytics\",\"authors\":\"R. Techentin, D. Foti, Peter W. Li, E. Daniel, B. Gilbert, D. Holmes, Sinan Al-Saffar\",\"doi\":\"10.1109/ICSC.2014.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a large semi-synthetic, semantically rich dataset, modeled after the medical record of a large medical institution. Using the highly diverse data.gov data repository and a multivariate data augmentation strategy, we can generate arbitrarily large semi-synthetic datasets which can be used to test new algorithms and computational platforms. The construction process and basic data characterization are described. The databases, as well as code for data collection, consolidation, and augmentation are available for distribution.\",\"PeriodicalId\":175352,\"journal\":{\"name\":\"2014 IEEE International Conference on Semantic Computing\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2014.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们开发了一个大型的半合成的、语义丰富的数据集,以一家大型医疗机构的医疗记录为模型。使用高度多样化的data.gov数据存储库和多元数据增强策略,我们可以生成任意大的半合成数据集,这些数据集可以用来测试新的算法和计算平台。介绍了施工过程和基本数据表征。数据库以及用于数据收集、整合和增强的代码都可以用于分发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Semi-synthetic Dataset as a Testbed for Big-Data Semantic Analytics
We have developed a large semi-synthetic, semantically rich dataset, modeled after the medical record of a large medical institution. Using the highly diverse data.gov data repository and a multivariate data augmentation strategy, we can generate arbitrarily large semi-synthetic datasets which can be used to test new algorithms and computational platforms. The construction process and basic data characterization are described. The databases, as well as code for data collection, consolidation, and augmentation are available for distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信