基于全波反演(FWI)的手持式探地雷达(GPR)增强特征提取

S. Sule, K. Paulson
{"title":"基于全波反演(FWI)的手持式探地雷达(GPR)增强特征提取","authors":"S. Sule, K. Paulson","doi":"10.23919/IRS.2017.8008194","DOIUrl":null,"url":null,"abstract":"This paper reports the exploration of the potential of enhanced target classification through feature extraction for anti-personnel (AP) mine detection using handheld ground penetrating radar (GPR). Principal component analysis (PCA) using singular value decomposition (SVD) of the Jacobian matrix is used to determine the ability of a bistatic handheld GPR/metal detector system to detect the presence of air space or vacuum in an AP mine preceded by initial detection by the metal detector and successful full wave inversion (FWI). The results are promising and show that under the right conditions of accurate sub-surface parameter estimation through FWI and clutter mitigation, GPR can detect air space in a mine, treating it as a kind of ‘container’, and enable improved target classification for mine detection.","PeriodicalId":430241,"journal":{"name":"2017 18th International Radar Symposium (IRS)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced feature extraction for landmine detection using handheld ground penetrating radar (GPR) based on full wave inversion (FWI)\",\"authors\":\"S. Sule, K. Paulson\",\"doi\":\"10.23919/IRS.2017.8008194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the exploration of the potential of enhanced target classification through feature extraction for anti-personnel (AP) mine detection using handheld ground penetrating radar (GPR). Principal component analysis (PCA) using singular value decomposition (SVD) of the Jacobian matrix is used to determine the ability of a bistatic handheld GPR/metal detector system to detect the presence of air space or vacuum in an AP mine preceded by initial detection by the metal detector and successful full wave inversion (FWI). The results are promising and show that under the right conditions of accurate sub-surface parameter estimation through FWI and clutter mitigation, GPR can detect air space in a mine, treating it as a kind of ‘container’, and enable improved target classification for mine detection.\",\"PeriodicalId\":430241,\"journal\":{\"name\":\"2017 18th International Radar Symposium (IRS)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Radar Symposium (IRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IRS.2017.8008194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IRS.2017.8008194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了手持式探地雷达(GPR)杀伤人员地雷探测中通过特征提取增强目标分类的潜力。利用雅可比矩阵奇异值分解(SVD)的主成分分析(PCA)来确定双基地手持GPR/金属探测器系统在金属探测器初始探测和成功全波反演(FWI)之前探测AP矿山中是否存在空气空间或真空的能力。结果表明,在通过FWI精确估计地下参数和杂波抑制的条件下,探地雷达可以探测到矿井中的空气空间,将其视为一种“容器”,并可以改进目标分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced feature extraction for landmine detection using handheld ground penetrating radar (GPR) based on full wave inversion (FWI)
This paper reports the exploration of the potential of enhanced target classification through feature extraction for anti-personnel (AP) mine detection using handheld ground penetrating radar (GPR). Principal component analysis (PCA) using singular value decomposition (SVD) of the Jacobian matrix is used to determine the ability of a bistatic handheld GPR/metal detector system to detect the presence of air space or vacuum in an AP mine preceded by initial detection by the metal detector and successful full wave inversion (FWI). The results are promising and show that under the right conditions of accurate sub-surface parameter estimation through FWI and clutter mitigation, GPR can detect air space in a mine, treating it as a kind of ‘container’, and enable improved target classification for mine detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信