HPX运行时系统中应用程序的任务大小对性能的影响

Patricia A. Grubel, Hartmut Kaiser, Jeanine E. Cook, Adrian Serio
{"title":"HPX运行时系统中应用程序的任务大小对性能的影响","authors":"Patricia A. Grubel, Hartmut Kaiser, Jeanine E. Cook, Adrian Serio","doi":"10.1109/CLUSTER.2015.119","DOIUrl":null,"url":null,"abstract":"As High Performance Computing moves toward Exascale, where parallel applications will be expected to run on millions of cores concurrently, every component of the computational model must perform optimally. One such component, the task scheduler, can potentially be optimized to runtime application requirements. We focus our study using a task-based runtime system, one possible solution towards Exascale computation. Based on task size and scheduler, the overheads associated with task scheduling vary. Therefore, to minimize overheads and optimize performance, either the task size or the scheduler must adapt. In this paper, we focus on adapting the task size, which can be easily done statically and potentially done dynamically. To this end, we first show how scheduling overheads change with task size or granularity. We then propose and execute a methodology to characterize these overheads and dynamically measure the effects of task granularity. The HPX runtime system [1] employs asynchronous fine-grained task scheduling and incorporates a dynamic performance modeling capability, providing an ideal experimental platform. Using the performance counter capabilities in HPX, we characterize task scheduling overheads and show metrics to determine optimal task size. This is the first step toward the goal of dynamically adapting task size to optimize parallel performance.","PeriodicalId":187042,"journal":{"name":"2015 IEEE International Conference on Cluster Computing","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"The Performance Implication of Task Size for Applications on the HPX Runtime System\",\"authors\":\"Patricia A. Grubel, Hartmut Kaiser, Jeanine E. Cook, Adrian Serio\",\"doi\":\"10.1109/CLUSTER.2015.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As High Performance Computing moves toward Exascale, where parallel applications will be expected to run on millions of cores concurrently, every component of the computational model must perform optimally. One such component, the task scheduler, can potentially be optimized to runtime application requirements. We focus our study using a task-based runtime system, one possible solution towards Exascale computation. Based on task size and scheduler, the overheads associated with task scheduling vary. Therefore, to minimize overheads and optimize performance, either the task size or the scheduler must adapt. In this paper, we focus on adapting the task size, which can be easily done statically and potentially done dynamically. To this end, we first show how scheduling overheads change with task size or granularity. We then propose and execute a methodology to characterize these overheads and dynamically measure the effects of task granularity. The HPX runtime system [1] employs asynchronous fine-grained task scheduling and incorporates a dynamic performance modeling capability, providing an ideal experimental platform. Using the performance counter capabilities in HPX, we characterize task scheduling overheads and show metrics to determine optimal task size. This is the first step toward the goal of dynamically adapting task size to optimize parallel performance.\",\"PeriodicalId\":187042,\"journal\":{\"name\":\"2015 IEEE International Conference on Cluster Computing\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTER.2015.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2015.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

随着高性能计算(High Performance Computing)向百亿亿级(Exascale)发展,预计并行应用程序将同时在数百万个核心上运行,计算模型的每个组件都必须实现最佳性能。其中一个这样的组件,即任务调度器,可以根据运行时应用程序的需求进行优化。我们的研究重点是使用基于任务的运行时系统,这是一个可能的解决方案。根据任务大小和调度程序,与任务调度相关的开销各不相同。因此,为了最小化开销并优化性能,任务大小或调度器必须进行调整。在本文中,我们着重于调整任务大小,这可以很容易地静态完成,也可以动态完成。为此,我们首先展示调度开销如何随任务大小或粒度而变化。然后,我们提出并执行一种方法来描述这些开销,并动态测量任务粒度的影响。HPX运行时系统[1]采用异步细粒度任务调度,并结合动态性能建模能力,提供了理想的实验平台。使用HPX中的性能计数器功能,我们描述了任务调度开销,并显示了确定最佳任务大小的指标。这是实现动态调整任务大小以优化并行性能目标的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Performance Implication of Task Size for Applications on the HPX Runtime System
As High Performance Computing moves toward Exascale, where parallel applications will be expected to run on millions of cores concurrently, every component of the computational model must perform optimally. One such component, the task scheduler, can potentially be optimized to runtime application requirements. We focus our study using a task-based runtime system, one possible solution towards Exascale computation. Based on task size and scheduler, the overheads associated with task scheduling vary. Therefore, to minimize overheads and optimize performance, either the task size or the scheduler must adapt. In this paper, we focus on adapting the task size, which can be easily done statically and potentially done dynamically. To this end, we first show how scheduling overheads change with task size or granularity. We then propose and execute a methodology to characterize these overheads and dynamically measure the effects of task granularity. The HPX runtime system [1] employs asynchronous fine-grained task scheduling and incorporates a dynamic performance modeling capability, providing an ideal experimental platform. Using the performance counter capabilities in HPX, we characterize task scheduling overheads and show metrics to determine optimal task size. This is the first step toward the goal of dynamically adapting task size to optimize parallel performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信