导向通道和梭形翅片管换热器的数值模拟及热强化

Chuan Sun, Nuttawut Lewpiriyawong, Kent Loong Khoo, P. Lee, S. Chou
{"title":"导向通道和梭形翅片管换热器的数值模拟及热强化","authors":"Chuan Sun, Nuttawut Lewpiriyawong, Kent Loong Khoo, P. Lee, S. Chou","doi":"10.1109/ITHERM.2016.7517670","DOIUrl":null,"url":null,"abstract":"As the air-side heat transfer is controlling the efficiency of finned tube heat exchanger (FTHX), this makes its enhancement important. After analyzing the thermal hydraulic performance of conventional plain plate fin, two novel air-side fin configurations are proposed. The first design guides more airflow into the back of the tubes and eliminates wake zones. The second design significantly enlarges the heat transfer area of air-side with little pressure drop penalty. Numerical investigations of conventional and novel fin designs are conducted. Based on the temperature and velocity flow fields and Nusselt number (Nu), the two novel designs are repeatedly improved. Comparing Nu and friction factor (f) with the plain plate fin, the two novel fin designs enhance the overall thermal performance by 103.1-109.0% and 64.5-78.4% respectively, while incurring pressure drop penalty of 312.8-419.6% and (- 1.5)-6.0% respectively. As such, the proposed enhanced air-side fin designs are promising candidates for improving the efficiency for FTHXs.","PeriodicalId":426908,"journal":{"name":"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Numerical modeling and thermal enhancement of finned tube heat exchanger with guiding channel and fusiform configurations\",\"authors\":\"Chuan Sun, Nuttawut Lewpiriyawong, Kent Loong Khoo, P. Lee, S. Chou\",\"doi\":\"10.1109/ITHERM.2016.7517670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the air-side heat transfer is controlling the efficiency of finned tube heat exchanger (FTHX), this makes its enhancement important. After analyzing the thermal hydraulic performance of conventional plain plate fin, two novel air-side fin configurations are proposed. The first design guides more airflow into the back of the tubes and eliminates wake zones. The second design significantly enlarges the heat transfer area of air-side with little pressure drop penalty. Numerical investigations of conventional and novel fin designs are conducted. Based on the temperature and velocity flow fields and Nusselt number (Nu), the two novel designs are repeatedly improved. Comparing Nu and friction factor (f) with the plain plate fin, the two novel fin designs enhance the overall thermal performance by 103.1-109.0% and 64.5-78.4% respectively, while incurring pressure drop penalty of 312.8-419.6% and (- 1.5)-6.0% respectively. As such, the proposed enhanced air-side fin designs are promising candidates for improving the efficiency for FTHXs.\",\"PeriodicalId\":426908,\"journal\":{\"name\":\"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2016.7517670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2016.7517670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于空气侧换热控制着翅片管换热器(FTHX)的效率,因此提高翅片管换热器的效率非常重要。在分析传统平面翅片热工性能的基础上,提出了两种新型翼片结构。第一种设计引导更多的气流进入管道的后部,并消除尾流区。第二种设计显著地扩大了空气侧的传热面积,而压降损失很小。对传统和新型翅片设计进行了数值研究。基于温度流场和速度流场以及努塞尔数(Nu),对这两种新设计进行了反复改进。对比Nu和摩擦系数f,两种新型翅片的整体热性能分别提高了103.1 ~ 109.0%和64.5 ~ 78.4%,而压降损失分别为312.8 ~ 419.6%和(- 1.5)~ 6.0%。因此,提出的增强型空气侧鳍设计是提高fthx效率的有希望的候选方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical modeling and thermal enhancement of finned tube heat exchanger with guiding channel and fusiform configurations
As the air-side heat transfer is controlling the efficiency of finned tube heat exchanger (FTHX), this makes its enhancement important. After analyzing the thermal hydraulic performance of conventional plain plate fin, two novel air-side fin configurations are proposed. The first design guides more airflow into the back of the tubes and eliminates wake zones. The second design significantly enlarges the heat transfer area of air-side with little pressure drop penalty. Numerical investigations of conventional and novel fin designs are conducted. Based on the temperature and velocity flow fields and Nusselt number (Nu), the two novel designs are repeatedly improved. Comparing Nu and friction factor (f) with the plain plate fin, the two novel fin designs enhance the overall thermal performance by 103.1-109.0% and 64.5-78.4% respectively, while incurring pressure drop penalty of 312.8-419.6% and (- 1.5)-6.0% respectively. As such, the proposed enhanced air-side fin designs are promising candidates for improving the efficiency for FTHXs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信