标记图的有效规则归纳

T. Horváth, S. Hoche, S. Wrobel
{"title":"标记图的有效规则归纳","authors":"T. Horváth, S. Hoche, S. Wrobel","doi":"10.1145/1141277.1141416","DOIUrl":null,"url":null,"abstract":"Labeled graphs provide a natural way of representing objects and the way they are connected. They have various applications in different fields, such as for example in computational chemistry. They can be represented by relational structures and thus stored in relational databases. Acyclic conjunctive queries form a practically relevant fragment of database queries that can be evaluated in polynomial time. We propose a top-down induction algorithm for learning acyclic conjunctive queries from labeled graphs represented by relational structures. The algorithm allows the use of building blocks which depend on the particular application considered. To compensate for the reduced expressive power of the hypothesis language and thus the potential loss in predictive performance, we combine acyclic conjunctive queries with confidence-rated boosting. In the empirical evaluation of the method we show that it leads to excellent prediction accuracy on the domain of mutagenicity.","PeriodicalId":269830,"journal":{"name":"Proceedings of the 2006 ACM symposium on Applied computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effective rule induction from labeled graphs\",\"authors\":\"T. Horváth, S. Hoche, S. Wrobel\",\"doi\":\"10.1145/1141277.1141416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Labeled graphs provide a natural way of representing objects and the way they are connected. They have various applications in different fields, such as for example in computational chemistry. They can be represented by relational structures and thus stored in relational databases. Acyclic conjunctive queries form a practically relevant fragment of database queries that can be evaluated in polynomial time. We propose a top-down induction algorithm for learning acyclic conjunctive queries from labeled graphs represented by relational structures. The algorithm allows the use of building blocks which depend on the particular application considered. To compensate for the reduced expressive power of the hypothesis language and thus the potential loss in predictive performance, we combine acyclic conjunctive queries with confidence-rated boosting. In the empirical evaluation of the method we show that it leads to excellent prediction accuracy on the domain of mutagenicity.\",\"PeriodicalId\":269830,\"journal\":{\"name\":\"Proceedings of the 2006 ACM symposium on Applied computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2006 ACM symposium on Applied computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1141277.1141416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM symposium on Applied computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1141277.1141416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

标记图提供了一种自然的方式来表示对象及其连接方式。它们在不同的领域有不同的应用,例如在计算化学中。它们可以用关系结构表示,从而存储在关系数据库中。无环合取查询是数据库查询中一个实际相关的片段,可以在多项式时间内求值。我们提出了一种自顶向下的归纳算法,用于从关系结构表示的标记图中学习无环连接查询。该算法允许使用依赖于所考虑的特定应用的构建块。为了弥补假设语言表达能力的降低和预测性能的潜在损失,我们将无循环连接查询与置信度提升相结合。在对该方法的经验评价中,我们表明该方法在致突变性领域具有很好的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective rule induction from labeled graphs
Labeled graphs provide a natural way of representing objects and the way they are connected. They have various applications in different fields, such as for example in computational chemistry. They can be represented by relational structures and thus stored in relational databases. Acyclic conjunctive queries form a practically relevant fragment of database queries that can be evaluated in polynomial time. We propose a top-down induction algorithm for learning acyclic conjunctive queries from labeled graphs represented by relational structures. The algorithm allows the use of building blocks which depend on the particular application considered. To compensate for the reduced expressive power of the hypothesis language and thus the potential loss in predictive performance, we combine acyclic conjunctive queries with confidence-rated boosting. In the empirical evaluation of the method we show that it leads to excellent prediction accuracy on the domain of mutagenicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信