运用先验知识评估语音摘要的相关性

Ricardo Ribeiro, David Martins de Matos
{"title":"运用先验知识评估语音摘要的相关性","authors":"Ricardo Ribeiro, David Martins de Matos","doi":"10.1109/SLT.2008.4777867","DOIUrl":null,"url":null,"abstract":"We explore the use of topic-based automatically acquired prior knowledge in speech summarization, assessing its influence throughout several term weighting schemes. All information is combined using latent semantic analysis as a core procedure to compute the relevance of the sentence-like units of the given input source. Evaluation is performed using the self-information measure, which tries to capture the informativeness of the summary in relation to the summarized input source. The similarity of the output summaries of the several approaches is also analyzed.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using prior knowledge to assess relevance in speech summarization\",\"authors\":\"Ricardo Ribeiro, David Martins de Matos\",\"doi\":\"10.1109/SLT.2008.4777867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the use of topic-based automatically acquired prior knowledge in speech summarization, assessing its influence throughout several term weighting schemes. All information is combined using latent semantic analysis as a core procedure to compute the relevance of the sentence-like units of the given input source. Evaluation is performed using the self-information measure, which tries to capture the informativeness of the summary in relation to the summarized input source. The similarity of the output summaries of the several approaches is also analyzed.\",\"PeriodicalId\":186876,\"journal\":{\"name\":\"2008 IEEE Spoken Language Technology Workshop\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Spoken Language Technology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2008.4777867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们探索了基于主题的自动获取先验知识在语音摘要中的使用,评估了其在几种术语加权方案中的影响。所有信息以潜在语义分析为核心程序组合,计算给定输入源的类句子单元的相关性。评估是使用自信息度量来执行的,它试图捕获与汇总输入源相关的摘要的信息量。分析了几种方法输出摘要的相似度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using prior knowledge to assess relevance in speech summarization
We explore the use of topic-based automatically acquired prior knowledge in speech summarization, assessing its influence throughout several term weighting schemes. All information is combined using latent semantic analysis as a core procedure to compute the relevance of the sentence-like units of the given input source. Evaluation is performed using the self-information measure, which tries to capture the informativeness of the summary in relation to the summarized input source. The similarity of the output summaries of the several approaches is also analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信