求解源项未知的非线性逆抛物型问题的全隐式有限差分法

H. D. Mazraeh, R. Pourgholi, Sahar Tavana
{"title":"求解源项未知的非线性逆抛物型问题的全隐式有限差分法","authors":"H. D. Mazraeh, R. Pourgholi, Sahar Tavana","doi":"10.1504/IJCSM.2018.10015907","DOIUrl":null,"url":null,"abstract":"A numerical procedure based on a fully implicit finite difference method for an inverse problem of identification of an unknown source in a heat equation is presented. The approach of the proposed method is to approximate unknown function from the solution of the minimisation problem based on the overspecified data. This problem is ill-posed, in the sense that the solution (if it exist) does not depend continuously on the data. To regularise this ill-conditioned, we apply the Tikhonov regularisation 0th, 1st and 2nd method to obtain the stable numerical approximation to the solution. A stability analysis shows that this numerical scheme approximation is unconditionally stable. Numerical results for two inverse source identification problems show that the proposed numerical algorithm is simple, accurate, stable and computationally efficient.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The fully-implicit finite difference method for solving nonlinear inverse parabolic problems with unknown source term\",\"authors\":\"H. D. Mazraeh, R. Pourgholi, Sahar Tavana\",\"doi\":\"10.1504/IJCSM.2018.10015907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical procedure based on a fully implicit finite difference method for an inverse problem of identification of an unknown source in a heat equation is presented. The approach of the proposed method is to approximate unknown function from the solution of the minimisation problem based on the overspecified data. This problem is ill-posed, in the sense that the solution (if it exist) does not depend continuously on the data. To regularise this ill-conditioned, we apply the Tikhonov regularisation 0th, 1st and 2nd method to obtain the stable numerical approximation to the solution. A stability analysis shows that this numerical scheme approximation is unconditionally stable. Numerical results for two inverse source identification problems show that the proposed numerical algorithm is simple, accurate, stable and computationally efficient.\",\"PeriodicalId\":399731,\"journal\":{\"name\":\"Int. J. Comput. Sci. Math.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCSM.2018.10015907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSM.2018.10015907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给出了求解热方程中未知源识别反问题的全隐式有限差分法的数值计算过程。所提出的方法是基于过指定数据的最小化问题的解来近似未知函数。这个问题是不适定的,因为它的解(如果存在的话)不连续地依赖于数据。为了正则化这个病态,我们应用Tikhonov正则化第0、第1和第2方法来获得解的稳定数值近似。稳定性分析表明,该数值格式近似是无条件稳定的。对两个反源识别问题的数值计算结果表明,所提出的数值算法简单、准确、稳定、计算效率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The fully-implicit finite difference method for solving nonlinear inverse parabolic problems with unknown source term
A numerical procedure based on a fully implicit finite difference method for an inverse problem of identification of an unknown source in a heat equation is presented. The approach of the proposed method is to approximate unknown function from the solution of the minimisation problem based on the overspecified data. This problem is ill-posed, in the sense that the solution (if it exist) does not depend continuously on the data. To regularise this ill-conditioned, we apply the Tikhonov regularisation 0th, 1st and 2nd method to obtain the stable numerical approximation to the solution. A stability analysis shows that this numerical scheme approximation is unconditionally stable. Numerical results for two inverse source identification problems show that the proposed numerical algorithm is simple, accurate, stable and computationally efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信