{"title":"将分层多种群遗传规划应用于信息检索排序学习","authors":"J. Lin, Jen-Yuan Yeh, Chao-Chung Liu","doi":"10.1109/ICMLC.2012.6359640","DOIUrl":null,"url":null,"abstract":"Information retrieval (IR) returns a relative ranking of documents with respect to a user query. Learning to rank for information retrieval (LR4IR) employs supervised learning techniques to address this problem, and it aims to produce a ranking model automatically for defining a proper sequential order of related documents based on the query. The ranking model determines the relationship degree between documents and the query. In this paper an improved version of RankGP is proposed. It uses layered multi-population genetic programming to obtain a ranking function which consists of a set of IR evidences and particular predefined operators. The proposed method is capable to generate complex functions through evolving small populations. In this paper, LETOR 4.0 was used to evaluate the effectiveness of the proposed method and the results showed that the method is competitive with other LR4IR Algorithms.","PeriodicalId":128006,"journal":{"name":"2012 International Conference on Machine Learning and Cybernetics","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Applying layered multi-population genetic programming on learning to rank for information retrieval\",\"authors\":\"J. Lin, Jen-Yuan Yeh, Chao-Chung Liu\",\"doi\":\"10.1109/ICMLC.2012.6359640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information retrieval (IR) returns a relative ranking of documents with respect to a user query. Learning to rank for information retrieval (LR4IR) employs supervised learning techniques to address this problem, and it aims to produce a ranking model automatically for defining a proper sequential order of related documents based on the query. The ranking model determines the relationship degree between documents and the query. In this paper an improved version of RankGP is proposed. It uses layered multi-population genetic programming to obtain a ranking function which consists of a set of IR evidences and particular predefined operators. The proposed method is capable to generate complex functions through evolving small populations. In this paper, LETOR 4.0 was used to evaluate the effectiveness of the proposed method and the results showed that the method is competitive with other LR4IR Algorithms.\",\"PeriodicalId\":128006,\"journal\":{\"name\":\"2012 International Conference on Machine Learning and Cybernetics\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2012.6359640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2012.6359640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applying layered multi-population genetic programming on learning to rank for information retrieval
Information retrieval (IR) returns a relative ranking of documents with respect to a user query. Learning to rank for information retrieval (LR4IR) employs supervised learning techniques to address this problem, and it aims to produce a ranking model automatically for defining a proper sequential order of related documents based on the query. The ranking model determines the relationship degree between documents and the query. In this paper an improved version of RankGP is proposed. It uses layered multi-population genetic programming to obtain a ranking function which consists of a set of IR evidences and particular predefined operators. The proposed method is capable to generate complex functions through evolving small populations. In this paper, LETOR 4.0 was used to evaluate the effectiveness of the proposed method and the results showed that the method is competitive with other LR4IR Algorithms.