一种高效的Web加密流量分类深度学习方法

Shiva Soleymanpour, H. Sadr, H. Beheshti
{"title":"一种高效的Web加密流量分类深度学习方法","authors":"Shiva Soleymanpour, H. Sadr, H. Beheshti","doi":"10.1109/ICWR49608.2020.9122299","DOIUrl":null,"url":null,"abstract":"Traffic classification plays an important role in network management and cyber-security. With the development of the Internet, online applications and in the following encrypted techniques, encrypted traffic has changed to a major challenge for traffic classification. In fact, unbalanced data, in which the unbalanced distribution of samples across classes lead to the classification performance reduction, is considered as one of the prominent challenges in encrypted traffic classification. Although previous studies tried to deal with the class imbalance problem in the pre-processing step using machine learning and particularly deep learning models, they are still confronting with some limitations. In this regard, a new classification method is proposed in this paper that tries to deal with the problem of unbalanced data during the training process. The proposed method employs a cost-sensitive convolution neural network and considers a cost for each classification according to the distribution of classes. These costs are then applied to the network along the training process to enhance the overall accuracy. Based on the empirical results, the proposed model obtained higher classification performance (about 2% on average) compared to the Deep Packet method.","PeriodicalId":231982,"journal":{"name":"2020 6th International Conference on Web Research (ICWR)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An Efficient Deep Learning Method for Encrypted Traffic Classification on the Web\",\"authors\":\"Shiva Soleymanpour, H. Sadr, H. Beheshti\",\"doi\":\"10.1109/ICWR49608.2020.9122299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic classification plays an important role in network management and cyber-security. With the development of the Internet, online applications and in the following encrypted techniques, encrypted traffic has changed to a major challenge for traffic classification. In fact, unbalanced data, in which the unbalanced distribution of samples across classes lead to the classification performance reduction, is considered as one of the prominent challenges in encrypted traffic classification. Although previous studies tried to deal with the class imbalance problem in the pre-processing step using machine learning and particularly deep learning models, they are still confronting with some limitations. In this regard, a new classification method is proposed in this paper that tries to deal with the problem of unbalanced data during the training process. The proposed method employs a cost-sensitive convolution neural network and considers a cost for each classification according to the distribution of classes. These costs are then applied to the network along the training process to enhance the overall accuracy. Based on the empirical results, the proposed model obtained higher classification performance (about 2% on average) compared to the Deep Packet method.\",\"PeriodicalId\":231982,\"journal\":{\"name\":\"2020 6th International Conference on Web Research (ICWR)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th International Conference on Web Research (ICWR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWR49608.2020.9122299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Web Research (ICWR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWR49608.2020.9122299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

流分类在网络管理和网络安全中起着重要的作用。随着互联网、在线应用和加密技术的发展,加密流量已成为流量分类的一大难题。实际上,数据的不平衡是加密流分类中最突出的挑战之一,即样本跨类分布的不平衡导致分类性能下降。虽然以往的研究试图利用机器学习特别是深度学习模型来处理预处理阶段的类不平衡问题,但仍然面临着一些局限性。为此,本文提出了一种新的分类方法,试图解决训练过程中数据不平衡的问题。该方法采用代价敏感的卷积神经网络,并根据分类的分布来考虑每个分类的代价。然后,在训练过程中将这些代价应用到网络中,以提高整体准确性。实验结果表明,与Deep Packet方法相比,该模型获得了更高的分类性能(平均约2%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Deep Learning Method for Encrypted Traffic Classification on the Web
Traffic classification plays an important role in network management and cyber-security. With the development of the Internet, online applications and in the following encrypted techniques, encrypted traffic has changed to a major challenge for traffic classification. In fact, unbalanced data, in which the unbalanced distribution of samples across classes lead to the classification performance reduction, is considered as one of the prominent challenges in encrypted traffic classification. Although previous studies tried to deal with the class imbalance problem in the pre-processing step using machine learning and particularly deep learning models, they are still confronting with some limitations. In this regard, a new classification method is proposed in this paper that tries to deal with the problem of unbalanced data during the training process. The proposed method employs a cost-sensitive convolution neural network and considers a cost for each classification according to the distribution of classes. These costs are then applied to the network along the training process to enhance the overall accuracy. Based on the empirical results, the proposed model obtained higher classification performance (about 2% on average) compared to the Deep Packet method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信