孤岛检测的统计信号处理方法

Robson Rosserrani Lima, A. Cerqueira, P. F. Ribeiro
{"title":"孤岛检测的统计信号处理方法","authors":"Robson Rosserrani Lima, A. Cerqueira, P. F. Ribeiro","doi":"10.21528/lnlm-vol21-no1-art5","DOIUrl":null,"url":null,"abstract":"The integration of distributed generation (DG) sources in the electric energy systems may bring new problems that need attention, one of these problems is the occurrence of unintentional islanding. Islanding is a condition in which part of the distribution network is disconnected from the system, and consumer units are still powered by one or more DGs, which can cause damage to equipment and pose risks to the safety of technicians. This paper shows an islanding detection method (IDM) in Power Systems with DG based on statistical signal processing. We used a MathWorks Simulink model of a grid-connected 250 kW photovoltaic (PV) array to simulate the behavior of the three-phase voltage signal in the point of common coupling (PCC) under the nominal operation, islanding condition, and fault condition using different load compositions. Principal Component Analysis (PCA) was used to extract the transitory events from the voltage signals, and then we used second-, third-, and fourth-order cumulants to generate features and the best ones were selected using the Fisher’s Discriminant Ratio (FDR). A Radial Basis Function Network (RBFN) makes the classification of the events. We found that, for this setup, we can achieve detection rates of 99% for both islanding condition detection and fault occurrence classification, no matter the power mismatch between the load and the DG.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Statistical Signal Processing Approach to Islanding Detection\",\"authors\":\"Robson Rosserrani Lima, A. Cerqueira, P. F. Ribeiro\",\"doi\":\"10.21528/lnlm-vol21-no1-art5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of distributed generation (DG) sources in the electric energy systems may bring new problems that need attention, one of these problems is the occurrence of unintentional islanding. Islanding is a condition in which part of the distribution network is disconnected from the system, and consumer units are still powered by one or more DGs, which can cause damage to equipment and pose risks to the safety of technicians. This paper shows an islanding detection method (IDM) in Power Systems with DG based on statistical signal processing. We used a MathWorks Simulink model of a grid-connected 250 kW photovoltaic (PV) array to simulate the behavior of the three-phase voltage signal in the point of common coupling (PCC) under the nominal operation, islanding condition, and fault condition using different load compositions. Principal Component Analysis (PCA) was used to extract the transitory events from the voltage signals, and then we used second-, third-, and fourth-order cumulants to generate features and the best ones were selected using the Fisher’s Discriminant Ratio (FDR). A Radial Basis Function Network (RBFN) makes the classification of the events. We found that, for this setup, we can achieve detection rates of 99% for both islanding condition detection and fault occurrence classification, no matter the power mismatch between the load and the DG.\",\"PeriodicalId\":386768,\"journal\":{\"name\":\"Learning and Nonlinear Models\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Learning and Nonlinear Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21528/lnlm-vol21-no1-art5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/lnlm-vol21-no1-art5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分布式电源在电力系统中的集成可能会带来一些需要关注的新问题,其中之一就是无意孤岛的发生。孤岛是指配电网络的一部分与系统断开,用户单位仍然由一个或多个dg供电,这可能导致设备损坏,并对技术人员的安全构成威胁。提出了一种基于统计信号处理的含DG电力系统孤岛检测方法。本文采用MathWorks Simulink模型对并网的250kw光伏(PV)阵列在标称运行、孤岛状态和故障状态下的三相电压信号在共耦合点(PCC)的行为进行了模拟。利用主成分分析(PCA)从电压信号中提取暂态事件,然后利用二阶、三阶和四阶累积量生成特征,并利用Fisher判别比(FDR)选择最佳特征。径向基函数网络(RBFN)对事件进行分类。我们发现,对于这种设置,无论负载与DG之间的功率不匹配,我们都可以实现99%的孤岛状态检测和故障发生分类检测率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Statistical Signal Processing Approach to Islanding Detection
The integration of distributed generation (DG) sources in the electric energy systems may bring new problems that need attention, one of these problems is the occurrence of unintentional islanding. Islanding is a condition in which part of the distribution network is disconnected from the system, and consumer units are still powered by one or more DGs, which can cause damage to equipment and pose risks to the safety of technicians. This paper shows an islanding detection method (IDM) in Power Systems with DG based on statistical signal processing. We used a MathWorks Simulink model of a grid-connected 250 kW photovoltaic (PV) array to simulate the behavior of the three-phase voltage signal in the point of common coupling (PCC) under the nominal operation, islanding condition, and fault condition using different load compositions. Principal Component Analysis (PCA) was used to extract the transitory events from the voltage signals, and then we used second-, third-, and fourth-order cumulants to generate features and the best ones were selected using the Fisher’s Discriminant Ratio (FDR). A Radial Basis Function Network (RBFN) makes the classification of the events. We found that, for this setup, we can achieve detection rates of 99% for both islanding condition detection and fault occurrence classification, no matter the power mismatch between the load and the DG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信