Tyler Shake, V. Srinivasaraghavan, P. Zellner, M. Agah
{"title":"基于嵌入式钝化电极绝缘体的电介质电泳(epπ dep)对乳腺癌细胞的处理","authors":"Tyler Shake, V. Srinivasaraghavan, P. Zellner, M. Agah","doi":"10.1109/ICSENS.2013.6688314","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new embedded passivated-electrode insulator-based dielectrophoresis (EπDEP) device for cell manipulation. This device maximizes the electric field strength in the microfluidic channel by reducing the thickness of the passivation layer to 5μm. The devices are made by polymer molding using 3D glass molds fabricated by melting glass into features created by the RIE-lag technique on silicon. This paper demonstrates the trapping of MDA-MB-468 mammary cancer cells using EπDEP technology with very high efficiency (97%).","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mammary cancer cell manipulation with embedded passivated-electrode insulator-based dielctrophoresis (EπDEP)\",\"authors\":\"Tyler Shake, V. Srinivasaraghavan, P. Zellner, M. Agah\",\"doi\":\"10.1109/ICSENS.2013.6688314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new embedded passivated-electrode insulator-based dielectrophoresis (EπDEP) device for cell manipulation. This device maximizes the electric field strength in the microfluidic channel by reducing the thickness of the passivation layer to 5μm. The devices are made by polymer molding using 3D glass molds fabricated by melting glass into features created by the RIE-lag technique on silicon. This paper demonstrates the trapping of MDA-MB-468 mammary cancer cells using EπDEP technology with very high efficiency (97%).\",\"PeriodicalId\":258260,\"journal\":{\"name\":\"2013 IEEE SENSORS\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2013.6688314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2013.6688314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mammary cancer cell manipulation with embedded passivated-electrode insulator-based dielctrophoresis (EπDEP)
In this paper, we introduce a new embedded passivated-electrode insulator-based dielectrophoresis (EπDEP) device for cell manipulation. This device maximizes the electric field strength in the microfluidic channel by reducing the thickness of the passivation layer to 5μm. The devices are made by polymer molding using 3D glass molds fabricated by melting glass into features created by the RIE-lag technique on silicon. This paper demonstrates the trapping of MDA-MB-468 mammary cancer cells using EπDEP technology with very high efficiency (97%).