图像去噪的卷积自编码器:一种组合子空间表示的视角

M. Teow
{"title":"图像去噪的卷积自编码器:一种组合子空间表示的视角","authors":"M. Teow","doi":"10.1109/IICAIET51634.2021.9573657","DOIUrl":null,"url":null,"abstract":"This study explores a convolutional autoencoder for image denoising with a proposed compositional subspace method. This modeling approach presents a structural and rigorous mathematical abstraction to understand a convolutional autoencoder's functional computation layers. The theoretical basis is that the best way to model a complex learning function is by using a composition of simple functions to form a multilayer successive cascaded function for complex representation. The proposed method has experimented with the Fashion-MNIST dataset. Experimental results are discussed and were consistent with the theoretical expectation.","PeriodicalId":234229,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional Autoencoder for Image Denoising: A Compositional Subspace Representation Perspective\",\"authors\":\"M. Teow\",\"doi\":\"10.1109/IICAIET51634.2021.9573657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores a convolutional autoencoder for image denoising with a proposed compositional subspace method. This modeling approach presents a structural and rigorous mathematical abstraction to understand a convolutional autoencoder's functional computation layers. The theoretical basis is that the best way to model a complex learning function is by using a composition of simple functions to form a multilayer successive cascaded function for complex representation. The proposed method has experimented with the Fashion-MNIST dataset. Experimental results are discussed and were consistent with the theoretical expectation.\",\"PeriodicalId\":234229,\"journal\":{\"name\":\"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICAIET51634.2021.9573657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET51634.2021.9573657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了一种基于组合子空间方法的图像去噪卷积自编码器。这种建模方法提供了一种结构化和严格的数学抽象来理解卷积自编码器的功能计算层。理论基础是建模复杂学习函数的最佳方法是使用简单函数的组合来形成多层连续级联函数进行复杂表示。该方法已在Fashion-MNIST数据集上进行了实验。对实验结果进行了讨论,结果与理论预期一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutional Autoencoder for Image Denoising: A Compositional Subspace Representation Perspective
This study explores a convolutional autoencoder for image denoising with a proposed compositional subspace method. This modeling approach presents a structural and rigorous mathematical abstraction to understand a convolutional autoencoder's functional computation layers. The theoretical basis is that the best way to model a complex learning function is by using a composition of simple functions to form a multilayer successive cascaded function for complex representation. The proposed method has experimented with the Fashion-MNIST dataset. Experimental results are discussed and were consistent with the theoretical expectation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信