基于脑电信号奇异值和经典特征的癫痫发作检测

Ahmed Elmahdy, N. Yahya, N. Kamel, A. Shahid
{"title":"基于脑电信号奇异值和经典特征的癫痫发作检测","authors":"Ahmed Elmahdy, N. Yahya, N. Kamel, A. Shahid","doi":"10.1109/ICBAPS.2015.7292238","DOIUrl":null,"url":null,"abstract":"In this paper, an epileptic seizure event detection algorithm utilizing five features namely singular values, total average power, delta band average power, variance and mean, is proposed. Using CHB-MIT Scalp EEG Database, the calculations of the features are performed over a sliding window of one second. The algorithm was evaluated in terms of accuracy, sensitivity, specificity and failure rate. This investigation used SVM as the classification technique. The performance comparisons are made with techniques based on classical features alone, singular value alone and combination of classical features and singular values. The results show that the proposed algorithm achieves better results than using singular values alone or using classical features alone with an average accuracy of 94.82%.","PeriodicalId":243293,"journal":{"name":"2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS)","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Epileptic seizure detection using singular values and classical features of EEG signals\",\"authors\":\"Ahmed Elmahdy, N. Yahya, N. Kamel, A. Shahid\",\"doi\":\"10.1109/ICBAPS.2015.7292238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an epileptic seizure event detection algorithm utilizing five features namely singular values, total average power, delta band average power, variance and mean, is proposed. Using CHB-MIT Scalp EEG Database, the calculations of the features are performed over a sliding window of one second. The algorithm was evaluated in terms of accuracy, sensitivity, specificity and failure rate. This investigation used SVM as the classification technique. The performance comparisons are made with techniques based on classical features alone, singular value alone and combination of classical features and singular values. The results show that the proposed algorithm achieves better results than using singular values alone or using classical features alone with an average accuracy of 94.82%.\",\"PeriodicalId\":243293,\"journal\":{\"name\":\"2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS)\",\"volume\":\"197 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBAPS.2015.7292238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBAPS.2015.7292238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种利用奇异值、总平均功率、δ波段平均功率、方差和均值五个特征的癫痫发作事件检测算法。利用CHB-MIT头皮脑电图数据库,在一秒的滑动窗口内进行特征计算。从准确率、灵敏度、特异性和失败率四个方面对该算法进行评价。本研究采用支持向量机作为分类技术。分别采用单独基于经典特征、单独基于奇异值和经典特征与奇异值相结合的方法进行性能比较。结果表明,与单独使用奇异值或单独使用经典特征相比,该算法取得了更好的效果,平均准确率为94.82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epileptic seizure detection using singular values and classical features of EEG signals
In this paper, an epileptic seizure event detection algorithm utilizing five features namely singular values, total average power, delta band average power, variance and mean, is proposed. Using CHB-MIT Scalp EEG Database, the calculations of the features are performed over a sliding window of one second. The algorithm was evaluated in terms of accuracy, sensitivity, specificity and failure rate. This investigation used SVM as the classification technique. The performance comparisons are made with techniques based on classical features alone, singular value alone and combination of classical features and singular values. The results show that the proposed algorithm achieves better results than using singular values alone or using classical features alone with an average accuracy of 94.82%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信