声音事件检测与自适应频率选择

Zhepei Wang, Jonah Casebeer, Adam Clemmitt, Efthymios Tzinis, P. Smaragdis
{"title":"声音事件检测与自适应频率选择","authors":"Zhepei Wang, Jonah Casebeer, Adam Clemmitt, Efthymios Tzinis, P. Smaragdis","doi":"10.1109/WASPAA52581.2021.9632798","DOIUrl":null,"url":null,"abstract":"In this work, we present HIDACT, a novel network architecture for adaptive computation for efficiently recognizing acoustic events. We evaluate the model on a sound event detection task where we train it to adaptively process frequency bands. The model learns to adapt to the input without requesting all frequency sub-bands provided. It can make confident predictions within fewer processing steps, hence reducing the amount of computation. Experimental results show that HIDACT has comparable performance to baseline models with more parameters and higher computational complexity. Furthermore, the model can adjust the amount of computation based on the data and computational budget.","PeriodicalId":429900,"journal":{"name":"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sound Event Detection with Adaptive Frequency Selection\",\"authors\":\"Zhepei Wang, Jonah Casebeer, Adam Clemmitt, Efthymios Tzinis, P. Smaragdis\",\"doi\":\"10.1109/WASPAA52581.2021.9632798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present HIDACT, a novel network architecture for adaptive computation for efficiently recognizing acoustic events. We evaluate the model on a sound event detection task where we train it to adaptively process frequency bands. The model learns to adapt to the input without requesting all frequency sub-bands provided. It can make confident predictions within fewer processing steps, hence reducing the amount of computation. Experimental results show that HIDACT has comparable performance to baseline models with more parameters and higher computational complexity. Furthermore, the model can adjust the amount of computation based on the data and computational budget.\",\"PeriodicalId\":429900,\"journal\":{\"name\":\"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WASPAA52581.2021.9632798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA52581.2021.9632798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们提出了一种新的网络结构HIDACT,用于自适应计算,以有效地识别声事件。我们在声音事件检测任务中评估模型,我们训练它自适应处理频带。该模型学习适应输入,而不要求提供所有的频率子带。它可以在更少的处理步骤内做出可靠的预测,从而减少了计算量。实验结果表明,HIDACT具有与参数较多、计算复杂度较高的基线模型相当的性能。此外,该模型还可以根据数据和计算预算来调整计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sound Event Detection with Adaptive Frequency Selection
In this work, we present HIDACT, a novel network architecture for adaptive computation for efficiently recognizing acoustic events. We evaluate the model on a sound event detection task where we train it to adaptively process frequency bands. The model learns to adapt to the input without requesting all frequency sub-bands provided. It can make confident predictions within fewer processing steps, hence reducing the amount of computation. Experimental results show that HIDACT has comparable performance to baseline models with more parameters and higher computational complexity. Furthermore, the model can adjust the amount of computation based on the data and computational budget.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信