Serhan Gül, Jan Timo Meyer, C. Hellge, T. Schierl, W. Samek
{"title":"H.265/HEVC视频流中的混合视频对象跟踪","authors":"Serhan Gül, Jan Timo Meyer, C. Hellge, T. Schierl, W. Samek","doi":"10.1109/MMSP.2016.7813363","DOIUrl":null,"url":null,"abstract":"In this paper we propose a hybrid tracking method which detects moving objects in videos compressed according to H.265/HEVC standard. Our framework largely depends on motion vectors (MV) and block types obtained by partially decoding the video bit stream and occasionally uses pixel domain information to distinguish between two objects. The compressed domain method is based on a Markov Random Field (MRF) model that captures spatial and temporal coherence of the moving object and is updated on a frame-to-frame basis. The hybrid nature of our approach stems from the usage of a pixel domain method that extracts the color information from the fully-decoded I frames and is updated only after completion of each Group-of-Pictures (GOP). We test the tracking accuracy of our method using standard video sequences and show that our hybrid framework provides better tracking accuracy than a state-of-the-art MRF model.","PeriodicalId":113192,"journal":{"name":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Hybrid video object tracking in H.265/HEVC video streams\",\"authors\":\"Serhan Gül, Jan Timo Meyer, C. Hellge, T. Schierl, W. Samek\",\"doi\":\"10.1109/MMSP.2016.7813363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a hybrid tracking method which detects moving objects in videos compressed according to H.265/HEVC standard. Our framework largely depends on motion vectors (MV) and block types obtained by partially decoding the video bit stream and occasionally uses pixel domain information to distinguish between two objects. The compressed domain method is based on a Markov Random Field (MRF) model that captures spatial and temporal coherence of the moving object and is updated on a frame-to-frame basis. The hybrid nature of our approach stems from the usage of a pixel domain method that extracts the color information from the fully-decoded I frames and is updated only after completion of each Group-of-Pictures (GOP). We test the tracking accuracy of our method using standard video sequences and show that our hybrid framework provides better tracking accuracy than a state-of-the-art MRF model.\",\"PeriodicalId\":113192,\"journal\":{\"name\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2016.7813363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2016.7813363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid video object tracking in H.265/HEVC video streams
In this paper we propose a hybrid tracking method which detects moving objects in videos compressed according to H.265/HEVC standard. Our framework largely depends on motion vectors (MV) and block types obtained by partially decoding the video bit stream and occasionally uses pixel domain information to distinguish between two objects. The compressed domain method is based on a Markov Random Field (MRF) model that captures spatial and temporal coherence of the moving object and is updated on a frame-to-frame basis. The hybrid nature of our approach stems from the usage of a pixel domain method that extracts the color information from the fully-decoded I frames and is updated only after completion of each Group-of-Pictures (GOP). We test the tracking accuracy of our method using standard video sequences and show that our hybrid framework provides better tracking accuracy than a state-of-the-art MRF model.