H.265/HEVC视频流中的混合视频对象跟踪

Serhan Gül, Jan Timo Meyer, C. Hellge, T. Schierl, W. Samek
{"title":"H.265/HEVC视频流中的混合视频对象跟踪","authors":"Serhan Gül, Jan Timo Meyer, C. Hellge, T. Schierl, W. Samek","doi":"10.1109/MMSP.2016.7813363","DOIUrl":null,"url":null,"abstract":"In this paper we propose a hybrid tracking method which detects moving objects in videos compressed according to H.265/HEVC standard. Our framework largely depends on motion vectors (MV) and block types obtained by partially decoding the video bit stream and occasionally uses pixel domain information to distinguish between two objects. The compressed domain method is based on a Markov Random Field (MRF) model that captures spatial and temporal coherence of the moving object and is updated on a frame-to-frame basis. The hybrid nature of our approach stems from the usage of a pixel domain method that extracts the color information from the fully-decoded I frames and is updated only after completion of each Group-of-Pictures (GOP). We test the tracking accuracy of our method using standard video sequences and show that our hybrid framework provides better tracking accuracy than a state-of-the-art MRF model.","PeriodicalId":113192,"journal":{"name":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Hybrid video object tracking in H.265/HEVC video streams\",\"authors\":\"Serhan Gül, Jan Timo Meyer, C. Hellge, T. Schierl, W. Samek\",\"doi\":\"10.1109/MMSP.2016.7813363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a hybrid tracking method which detects moving objects in videos compressed according to H.265/HEVC standard. Our framework largely depends on motion vectors (MV) and block types obtained by partially decoding the video bit stream and occasionally uses pixel domain information to distinguish between two objects. The compressed domain method is based on a Markov Random Field (MRF) model that captures spatial and temporal coherence of the moving object and is updated on a frame-to-frame basis. The hybrid nature of our approach stems from the usage of a pixel domain method that extracts the color information from the fully-decoded I frames and is updated only after completion of each Group-of-Pictures (GOP). We test the tracking accuracy of our method using standard video sequences and show that our hybrid framework provides better tracking accuracy than a state-of-the-art MRF model.\",\"PeriodicalId\":113192,\"journal\":{\"name\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2016.7813363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2016.7813363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了一种基于H.265/HEVC压缩视频中运动目标检测的混合跟踪方法。我们的框架很大程度上依赖于通过部分解码视频比特流获得的运动矢量(MV)和块类型,偶尔使用像素域信息来区分两个对象。压缩域方法基于马尔科夫随机场(MRF)模型,该模型捕获运动目标的空间和时间相干性,并在帧到帧的基础上进行更新。我们的方法的混合性质源于像素域方法的使用,该方法从完全解码的I帧中提取颜色信息,并仅在每个组图(GOP)完成后更新。我们使用标准视频序列测试了我们方法的跟踪精度,并表明我们的混合框架提供了比最先进的MRF模型更好的跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid video object tracking in H.265/HEVC video streams
In this paper we propose a hybrid tracking method which detects moving objects in videos compressed according to H.265/HEVC standard. Our framework largely depends on motion vectors (MV) and block types obtained by partially decoding the video bit stream and occasionally uses pixel domain information to distinguish between two objects. The compressed domain method is based on a Markov Random Field (MRF) model that captures spatial and temporal coherence of the moving object and is updated on a frame-to-frame basis. The hybrid nature of our approach stems from the usage of a pixel domain method that extracts the color information from the fully-decoded I frames and is updated only after completion of each Group-of-Pictures (GOP). We test the tracking accuracy of our method using standard video sequences and show that our hybrid framework provides better tracking accuracy than a state-of-the-art MRF model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信