{"title":"在RAPSim软件中实现电池电动汽车和BESS,丰富der集成配电系统的电力工程教育","authors":"Travis M. Newbolt, P. Mandal, Hongjie Wang","doi":"10.1109/NAPS52732.2021.9654476","DOIUrl":null,"url":null,"abstract":"This paper presents the implementation of battery electric vehicles (BEVs) and battery energy storage systems (BESS) within residential networked microgrids that incorporate distributed energy resources (DERs) to produce electrical power, as well as an updated daily load curve for residential households, using Renewable Alternative Power Systems Simulation (RAPSim) Software. It is projected that the number of electric vehicles within the residential neighborhoods will increase, and therefore, it is essential that we provide a description of how to implement BEVs and BESS into a microgrid simulation software. Furthermore, this paper provides insight into the behavior of a microgrid considering case studies simulated within RAPSim software to advance electric power engineering education and research at undergraduate (senior) and graduate levels in the area of DER-integrated distribution systems.","PeriodicalId":123077,"journal":{"name":"2021 North American Power Symposium (NAPS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of Battery EVs and BESS into RAPSim Software to Enrich Power Engineering Education in DER-Integrated Distribution Systems\",\"authors\":\"Travis M. Newbolt, P. Mandal, Hongjie Wang\",\"doi\":\"10.1109/NAPS52732.2021.9654476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the implementation of battery electric vehicles (BEVs) and battery energy storage systems (BESS) within residential networked microgrids that incorporate distributed energy resources (DERs) to produce electrical power, as well as an updated daily load curve for residential households, using Renewable Alternative Power Systems Simulation (RAPSim) Software. It is projected that the number of electric vehicles within the residential neighborhoods will increase, and therefore, it is essential that we provide a description of how to implement BEVs and BESS into a microgrid simulation software. Furthermore, this paper provides insight into the behavior of a microgrid considering case studies simulated within RAPSim software to advance electric power engineering education and research at undergraduate (senior) and graduate levels in the area of DER-integrated distribution systems.\",\"PeriodicalId\":123077,\"journal\":{\"name\":\"2021 North American Power Symposium (NAPS)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS52732.2021.9654476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS52732.2021.9654476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of Battery EVs and BESS into RAPSim Software to Enrich Power Engineering Education in DER-Integrated Distribution Systems
This paper presents the implementation of battery electric vehicles (BEVs) and battery energy storage systems (BESS) within residential networked microgrids that incorporate distributed energy resources (DERs) to produce electrical power, as well as an updated daily load curve for residential households, using Renewable Alternative Power Systems Simulation (RAPSim) Software. It is projected that the number of electric vehicles within the residential neighborhoods will increase, and therefore, it is essential that we provide a description of how to implement BEVs and BESS into a microgrid simulation software. Furthermore, this paper provides insight into the behavior of a microgrid considering case studies simulated within RAPSim software to advance electric power engineering education and research at undergraduate (senior) and graduate levels in the area of DER-integrated distribution systems.