用配置有理样条函数法近似解Fredholm积分方程

A. Ramazanov, V. Magomedova
{"title":"用配置有理样条函数法近似解Fredholm积分方程","authors":"A. Ramazanov, V. Magomedova","doi":"10.31029/demr.17.2","DOIUrl":null,"url":null,"abstract":"For arbitrary grids of nodes, an approximate solution of the integral equation Fredholm of the second kind in the form of a collocation rational spline function is obtained. Estimates of the rate of uniform convergence of approximate solutions to the exact solution from the smoothness class $C^r$ for $r=0,1,2$ are presented.","PeriodicalId":431345,"journal":{"name":"Daghestan Electronic Mathematical Reports","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the approximate solution of the Fredholm's integral equations by the method of collocation rational spline functions\",\"authors\":\"A. Ramazanov, V. Magomedova\",\"doi\":\"10.31029/demr.17.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For arbitrary grids of nodes, an approximate solution of the integral equation Fredholm of the second kind in the form of a collocation rational spline function is obtained. Estimates of the rate of uniform convergence of approximate solutions to the exact solution from the smoothness class $C^r$ for $r=0,1,2$ are presented.\",\"PeriodicalId\":431345,\"journal\":{\"name\":\"Daghestan Electronic Mathematical Reports\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Daghestan Electronic Mathematical Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31029/demr.17.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Daghestan Electronic Mathematical Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31029/demr.17.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于任意节点网格,得到了第二类积分方程Fredholm的配置有理样条函数的近似解。给出了光滑类C^r$对于r=0,1,2$的近似解到精确解的一致收敛率的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the approximate solution of the Fredholm's integral equations by the method of collocation rational spline functions
For arbitrary grids of nodes, an approximate solution of the integral equation Fredholm of the second kind in the form of a collocation rational spline function is obtained. Estimates of the rate of uniform convergence of approximate solutions to the exact solution from the smoothness class $C^r$ for $r=0,1,2$ are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信