识别突变包容关系

Beatriz Souza
{"title":"识别突变包容关系","authors":"Beatriz Souza","doi":"10.1145/3324884.3418921","DOIUrl":null,"url":null,"abstract":"One recent promising direction in reducing costs of mutation analysis is to identify redundant mutations. We propose a technique to discover redundant mutations by proving subsumption relations among method-level mutation operators using weak mutation testing. We conceive and encode a theory of subsumption relations in Z3 for 40 mutation targets (mutations of an expression or statement). Then we prove a number of subsumption relations using the Z3 theorem prover, and reduce the number of mutations in a number of mutation targets. MUJAvA-M includes some subsumption relations in Mujava. We apply Mujava and Mujava-m to 187 classes of 17 projects. Our approach correctly discards mutations in 74.97% of the cases, and reduces the number of mutations by 72.52%.","PeriodicalId":106337,"journal":{"name":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Identifying Mutation Subsumption Relations\",\"authors\":\"Beatriz Souza\",\"doi\":\"10.1145/3324884.3418921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One recent promising direction in reducing costs of mutation analysis is to identify redundant mutations. We propose a technique to discover redundant mutations by proving subsumption relations among method-level mutation operators using weak mutation testing. We conceive and encode a theory of subsumption relations in Z3 for 40 mutation targets (mutations of an expression or statement). Then we prove a number of subsumption relations using the Z3 theorem prover, and reduce the number of mutations in a number of mutation targets. MUJAvA-M includes some subsumption relations in Mujava. We apply Mujava and Mujava-m to 187 classes of 17 projects. Our approach correctly discards mutations in 74.97% of the cases, and reduces the number of mutations by 72.52%.\",\"PeriodicalId\":106337,\"journal\":{\"name\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3324884.3418921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3418921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在降低突变分析成本方面,最近一个有希望的方向是识别冗余突变。本文提出了一种利用弱突变检验证明方法级突变算子之间的包容关系来发现冗余突变的方法。我们在Z3中构想并编码了40个突变目标(表达式或语句的突变)的包容关系理论。然后利用Z3定理证明器证明了若干包含关系,并减少了若干突变目标中的突变数。Mujava - m在Mujava中包含了一些包容关系。我们将Mujava和Mujava-m应用于17个项目的187个类。我们的方法正确丢弃了74.97%的突变,减少了72.52%的突变数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Mutation Subsumption Relations
One recent promising direction in reducing costs of mutation analysis is to identify redundant mutations. We propose a technique to discover redundant mutations by proving subsumption relations among method-level mutation operators using weak mutation testing. We conceive and encode a theory of subsumption relations in Z3 for 40 mutation targets (mutations of an expression or statement). Then we prove a number of subsumption relations using the Z3 theorem prover, and reduce the number of mutations in a number of mutation targets. MUJAvA-M includes some subsumption relations in Mujava. We apply Mujava and Mujava-m to 187 classes of 17 projects. Our approach correctly discards mutations in 74.97% of the cases, and reduces the number of mutations by 72.52%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信