基因调控网络的变分贝叶斯方法的改进

M. Sánchez-Castillo, I. M. Tienda-Luna, D. Blanco-Navarro, M. Perez
{"title":"基因调控网络的变分贝叶斯方法的改进","authors":"M. Sánchez-Castillo, I. M. Tienda-Luna, D. Blanco-Navarro, M. Perez","doi":"10.1109/GENSiPS.2011.6169481","DOIUrl":null,"url":null,"abstract":"We have revised the Markov model used in the analysis of microarray time-series data to uncover the gene regulatory network. Previous linear models establishes genetic relations between the microarray data which are assumed to have noise. We propose a new model to distinguish between observed data and real expression levels. The new model does not overestimate the noise and fits better the nature of the problem. We have also studied how the variational Bayesian algorithm can be modified to solve this problem. Finally, we have performed a prior analysis to include objective knowledge into the Bayesian methodology.","PeriodicalId":181666,"journal":{"name":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Revision of the variational Bayesian method for uncovering genes regulatory network\",\"authors\":\"M. Sánchez-Castillo, I. M. Tienda-Luna, D. Blanco-Navarro, M. Perez\",\"doi\":\"10.1109/GENSiPS.2011.6169481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have revised the Markov model used in the analysis of microarray time-series data to uncover the gene regulatory network. Previous linear models establishes genetic relations between the microarray data which are assumed to have noise. We propose a new model to distinguish between observed data and real expression levels. The new model does not overestimate the noise and fits better the nature of the problem. We have also studied how the variational Bayesian algorithm can be modified to solve this problem. Finally, we have performed a prior analysis to include objective knowledge into the Bayesian methodology.\",\"PeriodicalId\":181666,\"journal\":{\"name\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GENSiPS.2011.6169481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSiPS.2011.6169481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们修改了用于分析微阵列时间序列数据的马尔可夫模型,以揭示基因调控网络。先前的线性模型建立了假设有噪声的微阵列数据之间的遗传关系。我们提出了一个新的模型来区分观察到的数据和真实的表达水平。新模型没有高估噪声,更符合问题的性质。我们还研究了如何修改变分贝叶斯算法来解决这个问题。最后,我们进行了先验分析,将客观知识纳入贝叶斯方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revision of the variational Bayesian method for uncovering genes regulatory network
We have revised the Markov model used in the analysis of microarray time-series data to uncover the gene regulatory network. Previous linear models establishes genetic relations between the microarray data which are assumed to have noise. We propose a new model to distinguish between observed data and real expression levels. The new model does not overestimate the noise and fits better the nature of the problem. We have also studied how the variational Bayesian algorithm can be modified to solve this problem. Finally, we have performed a prior analysis to include objective knowledge into the Bayesian methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信