一种用于未知互耦DOA估计的阵列协方差向量稀疏表示

Dandan Meng, Xianpeng Wang, Mengxing Huang, Chong Shen, Yuehao Guo
{"title":"一种用于未知互耦DOA估计的阵列协方差向量稀疏表示","authors":"Dandan Meng, Xianpeng Wang, Mengxing Huang, Chong Shen, Yuehao Guo","doi":"10.1109/ICCT.2018.8599977","DOIUrl":null,"url":null,"abstract":"The effect of unknown mutual coupling can degrade the direction of arrival (DOA) estimation performance. In this paper, a sparse representation method of array covariance vectors (SRACV) based on a new data model is proposed to settle above problem for uniform linear array (ULA). In our proposed method, an efficient block sparse representation model is firstly constructed without the effect of unknown mutual coupling by using the banded complex symmetric Toeplitz structure of mutual coupling. Then a SRACV algorithm is proposed, in which the DOA estimation is estimated by searching the block sparse coefficients of the array covariance vector. The proposed method not only avoids the loss of array aperture, but also can perform well and get superior DOA estimation performance under the condition of unknown mutual coupling. Simulation experiments demonstrate that the superiority of our proposed method with unknown mutual coupling.","PeriodicalId":244952,"journal":{"name":"2018 IEEE 18th International Conference on Communication Technology (ICCT)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Sparse Representation of Array Covariance Vectors for DOA Estimation with Unknown Mutual Coupling\",\"authors\":\"Dandan Meng, Xianpeng Wang, Mengxing Huang, Chong Shen, Yuehao Guo\",\"doi\":\"10.1109/ICCT.2018.8599977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of unknown mutual coupling can degrade the direction of arrival (DOA) estimation performance. In this paper, a sparse representation method of array covariance vectors (SRACV) based on a new data model is proposed to settle above problem for uniform linear array (ULA). In our proposed method, an efficient block sparse representation model is firstly constructed without the effect of unknown mutual coupling by using the banded complex symmetric Toeplitz structure of mutual coupling. Then a SRACV algorithm is proposed, in which the DOA estimation is estimated by searching the block sparse coefficients of the array covariance vector. The proposed method not only avoids the loss of array aperture, but also can perform well and get superior DOA estimation performance under the condition of unknown mutual coupling. Simulation experiments demonstrate that the superiority of our proposed method with unknown mutual coupling.\",\"PeriodicalId\":244952,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Communication Technology (ICCT)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Communication Technology (ICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT.2018.8599977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Communication Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT.2018.8599977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

未知相互耦合的影响会降低到达方向估计的性能。本文提出了一种基于新数据模型的阵列协方差向量(SRACV)稀疏表示方法,解决了均匀线性阵列(ULA)的上述问题。该方法首先利用互耦的带状复对称Toeplitz结构,构建了不受未知互耦影响的高效块稀疏表示模型;然后提出了一种SRACV算法,该算法通过搜索阵列协方差向量的块稀疏系数来估计DOA估计。该方法不仅避免了阵列孔径的损失,而且在未知互耦条件下也能很好地进行估计,获得较好的DOA估计性能。仿真实验证明了该方法在相互耦合未知情况下的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sparse Representation of Array Covariance Vectors for DOA Estimation with Unknown Mutual Coupling
The effect of unknown mutual coupling can degrade the direction of arrival (DOA) estimation performance. In this paper, a sparse representation method of array covariance vectors (SRACV) based on a new data model is proposed to settle above problem for uniform linear array (ULA). In our proposed method, an efficient block sparse representation model is firstly constructed without the effect of unknown mutual coupling by using the banded complex symmetric Toeplitz structure of mutual coupling. Then a SRACV algorithm is proposed, in which the DOA estimation is estimated by searching the block sparse coefficients of the array covariance vector. The proposed method not only avoids the loss of array aperture, but also can perform well and get superior DOA estimation performance under the condition of unknown mutual coupling. Simulation experiments demonstrate that the superiority of our proposed method with unknown mutual coupling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信