{"title":"基于时间动态学习的脉冲域特征提取","authors":"Honghao Zheng, Y. Yi","doi":"10.1109/ISQED57927.2023.10129326","DOIUrl":null,"url":null,"abstract":"Spiking neural network (SNN) has attracted more and more research attention due to its event-based property. SNNs are more power efficient with such property than a conventional artificial neural network. For transferring the information to spikes, SNNs need an encoding process. With the temporal encoding schemes, SNN can extract the temporal patterns from the original information. A more advanced encoding scheme is a multiplexing temporal encoding which combines several encoding schemes with different timescales to have a larger information density and dynamic range. After that, the spike timing dependence plasticity (STDP) learning algorithm is utilized for training the SNN since the SNN can not be trained with regular training algorithms like backpropagation. In this work, a spiking domain feature extraction neural network with temporal multiplexing encoding is designed on EAGLE and fabricated on the PCB board. The testbench’s power consumption is 400mW. From the test result, a conclusion can be drawn that the network on PCB can transfer the input information to multiplexing temporal encoded spikes and then utilize the spikes to adjust the synaptic weight voltage.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"364 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spiking Domain Feature Extraction with Temporal Dynamic Learning\",\"authors\":\"Honghao Zheng, Y. Yi\",\"doi\":\"10.1109/ISQED57927.2023.10129326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking neural network (SNN) has attracted more and more research attention due to its event-based property. SNNs are more power efficient with such property than a conventional artificial neural network. For transferring the information to spikes, SNNs need an encoding process. With the temporal encoding schemes, SNN can extract the temporal patterns from the original information. A more advanced encoding scheme is a multiplexing temporal encoding which combines several encoding schemes with different timescales to have a larger information density and dynamic range. After that, the spike timing dependence plasticity (STDP) learning algorithm is utilized for training the SNN since the SNN can not be trained with regular training algorithms like backpropagation. In this work, a spiking domain feature extraction neural network with temporal multiplexing encoding is designed on EAGLE and fabricated on the PCB board. The testbench’s power consumption is 400mW. From the test result, a conclusion can be drawn that the network on PCB can transfer the input information to multiplexing temporal encoded spikes and then utilize the spikes to adjust the synaptic weight voltage.\",\"PeriodicalId\":315053,\"journal\":{\"name\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"364 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED57927.2023.10129326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 24th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED57927.2023.10129326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spiking Domain Feature Extraction with Temporal Dynamic Learning
Spiking neural network (SNN) has attracted more and more research attention due to its event-based property. SNNs are more power efficient with such property than a conventional artificial neural network. For transferring the information to spikes, SNNs need an encoding process. With the temporal encoding schemes, SNN can extract the temporal patterns from the original information. A more advanced encoding scheme is a multiplexing temporal encoding which combines several encoding schemes with different timescales to have a larger information density and dynamic range. After that, the spike timing dependence plasticity (STDP) learning algorithm is utilized for training the SNN since the SNN can not be trained with regular training algorithms like backpropagation. In this work, a spiking domain feature extraction neural network with temporal multiplexing encoding is designed on EAGLE and fabricated on the PCB board. The testbench’s power consumption is 400mW. From the test result, a conclusion can be drawn that the network on PCB can transfer the input information to multiplexing temporal encoded spikes and then utilize the spikes to adjust the synaptic weight voltage.