Nadia Nahar, Haoran Zhang, G. Lewis, Shurui Zhou, Christian Kästner
{"title":"用机器学习组件构建产品的挑战-收集4758+从业人员的经验","authors":"Nadia Nahar, Haoran Zhang, G. Lewis, Shurui Zhou, Christian Kästner","doi":"10.1109/CAIN58948.2023.00034","DOIUrl":null,"url":null,"abstract":"Incorporating machine learning (ML) components into software products raises new software-engineering challenges and exacerbates existing ones. Many researchers have invested significant effort in understanding the challenges of industry practitioners working on building products with ML components, through interviews and surveys with practitioners. With the intention to aggregate and present their collective findings, we conduct a meta-summary study: We collect 50 relevant papers that together interacted with over 4758 practitioners using guidelines for systematic literature reviews. We then collected, grouped, and organized the over 500 mentions of challenges within those papers. We highlight the most commonly reported challenges and hope this meta-summary will be a useful resource for the research community to prioritize research and education in this field.","PeriodicalId":175580,"journal":{"name":"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Meta-Summary of Challenges in Building Products with ML Components – Collecting Experiences from 4758+ Practitioners\",\"authors\":\"Nadia Nahar, Haoran Zhang, G. Lewis, Shurui Zhou, Christian Kästner\",\"doi\":\"10.1109/CAIN58948.2023.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incorporating machine learning (ML) components into software products raises new software-engineering challenges and exacerbates existing ones. Many researchers have invested significant effort in understanding the challenges of industry practitioners working on building products with ML components, through interviews and surveys with practitioners. With the intention to aggregate and present their collective findings, we conduct a meta-summary study: We collect 50 relevant papers that together interacted with over 4758 practitioners using guidelines for systematic literature reviews. We then collected, grouped, and organized the over 500 mentions of challenges within those papers. We highlight the most commonly reported challenges and hope this meta-summary will be a useful resource for the research community to prioritize research and education in this field.\",\"PeriodicalId\":175580,\"journal\":{\"name\":\"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIN58948.2023.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIN58948.2023.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Meta-Summary of Challenges in Building Products with ML Components – Collecting Experiences from 4758+ Practitioners
Incorporating machine learning (ML) components into software products raises new software-engineering challenges and exacerbates existing ones. Many researchers have invested significant effort in understanding the challenges of industry practitioners working on building products with ML components, through interviews and surveys with practitioners. With the intention to aggregate and present their collective findings, we conduct a meta-summary study: We collect 50 relevant papers that together interacted with over 4758 practitioners using guidelines for systematic literature reviews. We then collected, grouped, and organized the over 500 mentions of challenges within those papers. We highlight the most commonly reported challenges and hope this meta-summary will be a useful resource for the research community to prioritize research and education in this field.