{"title":"电容放电驱动的磁通捕获螺旋磁通压缩发电机的设计考虑","authors":"A. Young, A. Neuber, M. Kristiansen","doi":"10.1109/PPC.2011.6191479","DOIUrl":null,"url":null,"abstract":"An investigation aimed at optimizing the integration between a capacitor based prime power source and flux-trapping helical flux compression generator (FT-HFCG) is presented. An FT-HFCG simulation code, previously benchmarked with single and multi-pitch generators, was employed to study the kilo-joule class explosive system for this purpose. The details of this effort, which include the optimization of the field coil and stator coupling, as well as an examination of the effect of field coil parameters on the system performance, will be described in this document. For the simulated parameter space, the choice of field coil configuration caused the system energy gain to vary by 300%, and the optimum field coil configuration was found to be a single Litz wire conductor that had an axial length which was approximately 60% of the stator axial length.","PeriodicalId":331835,"journal":{"name":"2011 IEEE Pulsed Power Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design considerations for flux-trapping helical flux compression generators energized by capacitive discharge\",\"authors\":\"A. Young, A. Neuber, M. Kristiansen\",\"doi\":\"10.1109/PPC.2011.6191479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An investigation aimed at optimizing the integration between a capacitor based prime power source and flux-trapping helical flux compression generator (FT-HFCG) is presented. An FT-HFCG simulation code, previously benchmarked with single and multi-pitch generators, was employed to study the kilo-joule class explosive system for this purpose. The details of this effort, which include the optimization of the field coil and stator coupling, as well as an examination of the effect of field coil parameters on the system performance, will be described in this document. For the simulated parameter space, the choice of field coil configuration caused the system energy gain to vary by 300%, and the optimum field coil configuration was found to be a single Litz wire conductor that had an axial length which was approximately 60% of the stator axial length.\",\"PeriodicalId\":331835,\"journal\":{\"name\":\"2011 IEEE Pulsed Power Conference\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Pulsed Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPC.2011.6191479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Pulsed Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.2011.6191479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design considerations for flux-trapping helical flux compression generators energized by capacitive discharge
An investigation aimed at optimizing the integration between a capacitor based prime power source and flux-trapping helical flux compression generator (FT-HFCG) is presented. An FT-HFCG simulation code, previously benchmarked with single and multi-pitch generators, was employed to study the kilo-joule class explosive system for this purpose. The details of this effort, which include the optimization of the field coil and stator coupling, as well as an examination of the effect of field coil parameters on the system performance, will be described in this document. For the simulated parameter space, the choice of field coil configuration caused the system energy gain to vary by 300%, and the optimum field coil configuration was found to be a single Litz wire conductor that had an axial length which was approximately 60% of the stator axial length.