William A. Groman, I. Kudelin, Megan L. Kelleher, Dahyeon Lee, A. Lind, Charlie McLemore, F. Quinlan, S. Diddams
{"title":"通过部分光分频稳定的10ghz微波合成","authors":"William A. Groman, I. Kudelin, Megan L. Kelleher, Dahyeon Lee, A. Lind, Charlie McLemore, F. Quinlan, S. Diddams","doi":"10.1109/MWP54208.2022.9997783","DOIUrl":null,"url":null,"abstract":"Synthesis of low-noise microwaves is desirable in a wide variety of scientific and engineering fields. Optical frequency division with frequency combs has been a key part in the realization of ultrastable microwave signals. However, fully self-referenced frequency combs are complex and involve several nonlinear processes for implementation of the f-2f interferometer. In this paper, we provide a novel approach for generation of ultrastable microwaves by stabilizing the comb spacing, while the offset frequency of the comb is free-running. This is achieved by mixing the beats of a frequency comb with two continuous wave (cw) lasers separated by 1.3 THz, which are PDH locked to a single reference cavity. We demonstrate the generation of stable 10 GHz microwaves with −140 dBc/Hz phase noise at 10 kHz Fourier frequency and 5·10−13 level Allan deviation instability at 0.3 s. This work projects the potential of future compact microwave generation with low power consumption.","PeriodicalId":127318,"journal":{"name":"2022 IEEE International Topical Meeting on Microwave Photonics (MWP)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable 10 GHz microwave synthesis via partial optical frequency division\",\"authors\":\"William A. Groman, I. Kudelin, Megan L. Kelleher, Dahyeon Lee, A. Lind, Charlie McLemore, F. Quinlan, S. Diddams\",\"doi\":\"10.1109/MWP54208.2022.9997783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthesis of low-noise microwaves is desirable in a wide variety of scientific and engineering fields. Optical frequency division with frequency combs has been a key part in the realization of ultrastable microwave signals. However, fully self-referenced frequency combs are complex and involve several nonlinear processes for implementation of the f-2f interferometer. In this paper, we provide a novel approach for generation of ultrastable microwaves by stabilizing the comb spacing, while the offset frequency of the comb is free-running. This is achieved by mixing the beats of a frequency comb with two continuous wave (cw) lasers separated by 1.3 THz, which are PDH locked to a single reference cavity. We demonstrate the generation of stable 10 GHz microwaves with −140 dBc/Hz phase noise at 10 kHz Fourier frequency and 5·10−13 level Allan deviation instability at 0.3 s. This work projects the potential of future compact microwave generation with low power consumption.\",\"PeriodicalId\":127318,\"journal\":{\"name\":\"2022 IEEE International Topical Meeting on Microwave Photonics (MWP)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Topical Meeting on Microwave Photonics (MWP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWP54208.2022.9997783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Topical Meeting on Microwave Photonics (MWP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWP54208.2022.9997783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stable 10 GHz microwave synthesis via partial optical frequency division
Synthesis of low-noise microwaves is desirable in a wide variety of scientific and engineering fields. Optical frequency division with frequency combs has been a key part in the realization of ultrastable microwave signals. However, fully self-referenced frequency combs are complex and involve several nonlinear processes for implementation of the f-2f interferometer. In this paper, we provide a novel approach for generation of ultrastable microwaves by stabilizing the comb spacing, while the offset frequency of the comb is free-running. This is achieved by mixing the beats of a frequency comb with two continuous wave (cw) lasers separated by 1.3 THz, which are PDH locked to a single reference cavity. We demonstrate the generation of stable 10 GHz microwaves with −140 dBc/Hz phase noise at 10 kHz Fourier frequency and 5·10−13 level Allan deviation instability at 0.3 s. This work projects the potential of future compact microwave generation with low power consumption.