基于自适应环境参数RSSI的无线传感器网络室内精确定位

R. A. Z. El-din, M. Rizk
{"title":"基于自适应环境参数RSSI的无线传感器网络室内精确定位","authors":"R. A. Z. El-din, M. Rizk","doi":"10.1109/ICIES.2012.6530866","DOIUrl":null,"url":null,"abstract":"Most of the applications in wireless sensor networks require accurate estimation of the location of a user or a mobile robot. However indoor localization cannot be effectively done using Global Positioning Systems (GPS). Recently wireless sensor networks are concerned with estimating the location of sensors using Received Signal Strength Indication (RSSI), although all the existing techniques that use RSSI have a bad accuracy of estimating the location. In this paper we have introduced a new algorithm using anew empirical method (RIMO's Empirical method) that significantly increases the accuracy of localization with minimum processing time and minimum power consumption. Our new empirical method can be extended to be used for outdoor applications with very high accuracy.","PeriodicalId":410182,"journal":{"name":"2012 First International Conference on Innovative Engineering Systems","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Accurate indoor localization based on RSSI with adaptive environmental parameters in wireless sensor networks\",\"authors\":\"R. A. Z. El-din, M. Rizk\",\"doi\":\"10.1109/ICIES.2012.6530866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the applications in wireless sensor networks require accurate estimation of the location of a user or a mobile robot. However indoor localization cannot be effectively done using Global Positioning Systems (GPS). Recently wireless sensor networks are concerned with estimating the location of sensors using Received Signal Strength Indication (RSSI), although all the existing techniques that use RSSI have a bad accuracy of estimating the location. In this paper we have introduced a new algorithm using anew empirical method (RIMO's Empirical method) that significantly increases the accuracy of localization with minimum processing time and minimum power consumption. Our new empirical method can be extended to be used for outdoor applications with very high accuracy.\",\"PeriodicalId\":410182,\"journal\":{\"name\":\"2012 First International Conference on Innovative Engineering Systems\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 First International Conference on Innovative Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIES.2012.6530866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 First International Conference on Innovative Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIES.2012.6530866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

无线传感器网络中的大多数应用都需要准确估计用户或移动机器人的位置。然而,利用全球定位系统(GPS)无法有效地进行室内定位。最近,无线传感器网络关注的是使用接收信号强度指示(RSSI)估计传感器的位置,尽管所有使用RSSI的现有技术估计位置的准确性都很差。本文采用一种新的经验方法(RIMO的经验方法),以最小的处理时间和最小的功耗显著提高了定位精度。我们的新经验方法可以扩展到户外应用,具有很高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate indoor localization based on RSSI with adaptive environmental parameters in wireless sensor networks
Most of the applications in wireless sensor networks require accurate estimation of the location of a user or a mobile robot. However indoor localization cannot be effectively done using Global Positioning Systems (GPS). Recently wireless sensor networks are concerned with estimating the location of sensors using Received Signal Strength Indication (RSSI), although all the existing techniques that use RSSI have a bad accuracy of estimating the location. In this paper we have introduced a new algorithm using anew empirical method (RIMO's Empirical method) that significantly increases the accuracy of localization with minimum processing time and minimum power consumption. Our new empirical method can be extended to be used for outdoor applications with very high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信