XGBoost对白血病不明原因发热患者感染的预测

Yan Li, Yanhui Song, Fei Ma
{"title":"XGBoost对白血病不明原因发热患者感染的预测","authors":"Yan Li, Yanhui Song, Fei Ma","doi":"10.1145/3563737.3563761","DOIUrl":null,"url":null,"abstract":"Discovering the source of a patient's fever without clinically localised signs can be a daunting task for doctors. In particular for leukaemia patients with fever of unknown origin, fast discovering the source of the fever is a formidable challenge, as this population has the potential to lead to fever in many different situations. In this paper, we applied XGBoost algorithm to predict the pathogenic infections from a big data repository of leukemia patients with fever of unknown origin (FUO) and compared the performance with other machine learning algorithms. Our results illustrates that those machine learning algorithms achieves good performance. In particular, the XGBoost obtains the best performance with an area under receiving-operating-characteristics curve (AUC) of 0.8376 and F1-score of 0.7034. Compared with existing literature, our experiment provides new insights for doctors to determine the cause of fever in leukemia patients.","PeriodicalId":127021,"journal":{"name":"Proceedings of the 7th International Conference on Biomedical Signal and Image Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"XGBoost Prediction of Infection of Leukemia Patients with Fever of Unknown Origin\",\"authors\":\"Yan Li, Yanhui Song, Fei Ma\",\"doi\":\"10.1145/3563737.3563761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering the source of a patient's fever without clinically localised signs can be a daunting task for doctors. In particular for leukaemia patients with fever of unknown origin, fast discovering the source of the fever is a formidable challenge, as this population has the potential to lead to fever in many different situations. In this paper, we applied XGBoost algorithm to predict the pathogenic infections from a big data repository of leukemia patients with fever of unknown origin (FUO) and compared the performance with other machine learning algorithms. Our results illustrates that those machine learning algorithms achieves good performance. In particular, the XGBoost obtains the best performance with an area under receiving-operating-characteristics curve (AUC) of 0.8376 and F1-score of 0.7034. Compared with existing literature, our experiment provides new insights for doctors to determine the cause of fever in leukemia patients.\",\"PeriodicalId\":127021,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Biomedical Signal and Image Processing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Biomedical Signal and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3563737.3563761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Biomedical Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3563737.3563761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对医生来说,在没有临床局部症状的情况下发现患者发烧的来源可能是一项艰巨的任务。特别是对于不明原因发热的白血病患者,快速发现发热来源是一项艰巨的挑战,因为这一人群有可能在许多不同情况下导致发热。本文应用XGBoost算法对白血病不明原因发热(FUO)患者的大数据库进行病原感染预测,并与其他机器学习算法进行性能比较。我们的结果表明,这些机器学习算法取得了良好的性能。其中,XGBoost的接收-工作特性曲线下面积(AUC)为0.8376,f1得分为0.7034,性能最佳。与已有文献相比,我们的实验为医生确定白血病患者发热原因提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
XGBoost Prediction of Infection of Leukemia Patients with Fever of Unknown Origin
Discovering the source of a patient's fever without clinically localised signs can be a daunting task for doctors. In particular for leukaemia patients with fever of unknown origin, fast discovering the source of the fever is a formidable challenge, as this population has the potential to lead to fever in many different situations. In this paper, we applied XGBoost algorithm to predict the pathogenic infections from a big data repository of leukemia patients with fever of unknown origin (FUO) and compared the performance with other machine learning algorithms. Our results illustrates that those machine learning algorithms achieves good performance. In particular, the XGBoost obtains the best performance with an area under receiving-operating-characteristics curve (AUC) of 0.8376 and F1-score of 0.7034. Compared with existing literature, our experiment provides new insights for doctors to determine the cause of fever in leukemia patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信