Cheng Zhou, Yanbo Long, Lei Shi, Longfei Zhao, Yu Zheng
{"title":"基于差分动态规划的动态抓取混合操作策略","authors":"Cheng Zhou, Yanbo Long, Lei Shi, Longfei Zhao, Yu Zheng","doi":"10.1109/ICRA48891.2023.10160817","DOIUrl":null,"url":null,"abstract":"To fully explore the potential of robots for dexterous manipulation, this paper presents a whole dynamic grasping process to achieve fluent grasping of a target object by the robot end-effector. The process starts from the phase of approaching the object over the phases of colliding with the object and letting it roll about the colliding point to the final phase of catching it by the palm or grasping it by the fingers of the end-effector. We derive a unified model for this hybrid dynamic manipulation process embodied as approaching-colliding-rolling-catching/grasping from the spatial vector based articulated body dynamics. Then, the whole process is formulated as a free-terminal constrained multi-phase optimal control problem (OCP). We extend the traditional differential dynamic programming (DDP) to solving this free-terminal OCP, where the backward pass of DDP involves constrained quadratic programming (QP) problems and we solve them by the primal-dual Augmented Lagrangian (PDAL) method. Simulations and real experiments are conducted to show the effectiveness of the proposed method for robotic dynamic grasping.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential Dynamic Programming based Hybrid Manipulation Strategy for Dynamic Grasping\",\"authors\":\"Cheng Zhou, Yanbo Long, Lei Shi, Longfei Zhao, Yu Zheng\",\"doi\":\"10.1109/ICRA48891.2023.10160817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To fully explore the potential of robots for dexterous manipulation, this paper presents a whole dynamic grasping process to achieve fluent grasping of a target object by the robot end-effector. The process starts from the phase of approaching the object over the phases of colliding with the object and letting it roll about the colliding point to the final phase of catching it by the palm or grasping it by the fingers of the end-effector. We derive a unified model for this hybrid dynamic manipulation process embodied as approaching-colliding-rolling-catching/grasping from the spatial vector based articulated body dynamics. Then, the whole process is formulated as a free-terminal constrained multi-phase optimal control problem (OCP). We extend the traditional differential dynamic programming (DDP) to solving this free-terminal OCP, where the backward pass of DDP involves constrained quadratic programming (QP) problems and we solve them by the primal-dual Augmented Lagrangian (PDAL) method. Simulations and real experiments are conducted to show the effectiveness of the proposed method for robotic dynamic grasping.\",\"PeriodicalId\":360533,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48891.2023.10160817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10160817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differential Dynamic Programming based Hybrid Manipulation Strategy for Dynamic Grasping
To fully explore the potential of robots for dexterous manipulation, this paper presents a whole dynamic grasping process to achieve fluent grasping of a target object by the robot end-effector. The process starts from the phase of approaching the object over the phases of colliding with the object and letting it roll about the colliding point to the final phase of catching it by the palm or grasping it by the fingers of the end-effector. We derive a unified model for this hybrid dynamic manipulation process embodied as approaching-colliding-rolling-catching/grasping from the spatial vector based articulated body dynamics. Then, the whole process is formulated as a free-terminal constrained multi-phase optimal control problem (OCP). We extend the traditional differential dynamic programming (DDP) to solving this free-terminal OCP, where the backward pass of DDP involves constrained quadratic programming (QP) problems and we solve them by the primal-dual Augmented Lagrangian (PDAL) method. Simulations and real experiments are conducted to show the effectiveness of the proposed method for robotic dynamic grasping.