信息物理系统确定性全局优化中一般二次问题的全局最小值求解

A. Kosolap
{"title":"信息物理系统确定性全局优化中一般二次问题的全局最小值求解","authors":"A. Kosolap","doi":"10.23939/acps2019.01.032","DOIUrl":null,"url":null,"abstract":"Cyber-Physical Systems (CPS) are integrations of computation and physical processes. We consider effective computations for designing difficult systems. In this paper, we propose new method of exact quadratic regularization for deterministic global optimization (EQR). This method can be used for the solution of a wide class of multiextreme problems, in particular, general quadratic problems. These problems will be transformed to maximization of norm a vector on convex set. The convex set is approximated by a polyhedron or intersection of balls. We offer the modified dual problem for maximization of norm a vector on intersection of balls. It allows to receive the solution of a primal problem. We use only local search (primal-dual interior point method) and a dichotomy method for search of a global extremum in the general quadratic problems.","PeriodicalId":188480,"journal":{"name":"Advances in Cyber-Physical Systems","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding the Global Minimum of the General Quadratic Problems During Deterministic Global Optimization in Cyber-Physical Systems\",\"authors\":\"A. Kosolap\",\"doi\":\"10.23939/acps2019.01.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-Physical Systems (CPS) are integrations of computation and physical processes. We consider effective computations for designing difficult systems. In this paper, we propose new method of exact quadratic regularization for deterministic global optimization (EQR). This method can be used for the solution of a wide class of multiextreme problems, in particular, general quadratic problems. These problems will be transformed to maximization of norm a vector on convex set. The convex set is approximated by a polyhedron or intersection of balls. We offer the modified dual problem for maximization of norm a vector on intersection of balls. It allows to receive the solution of a primal problem. We use only local search (primal-dual interior point method) and a dichotomy method for search of a global extremum in the general quadratic problems.\",\"PeriodicalId\":188480,\"journal\":{\"name\":\"Advances in Cyber-Physical Systems\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/acps2019.01.032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/acps2019.01.032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

信息物理系统(CPS)是计算和物理过程的集成。我们考虑有效的计算来设计困难的系统。本文提出了一种求解确定性全局优化问题的精确二次正则化方法。该方法可用于求解一类广泛的多极值问题,特别是一般的二次问题。这些问题将转化为凸集上范数向量的最大化问题。凸集由多面体或球的交点近似。给出了球交点上范数向量最大化的修正对偶问题。它允许接收原始问题的解。对于一般的二次问题,我们只使用局部搜索(原对偶内点法)和二分法来搜索全局极值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding the Global Minimum of the General Quadratic Problems During Deterministic Global Optimization in Cyber-Physical Systems
Cyber-Physical Systems (CPS) are integrations of computation and physical processes. We consider effective computations for designing difficult systems. In this paper, we propose new method of exact quadratic regularization for deterministic global optimization (EQR). This method can be used for the solution of a wide class of multiextreme problems, in particular, general quadratic problems. These problems will be transformed to maximization of norm a vector on convex set. The convex set is approximated by a polyhedron or intersection of balls. We offer the modified dual problem for maximization of norm a vector on intersection of balls. It allows to receive the solution of a primal problem. We use only local search (primal-dual interior point method) and a dichotomy method for search of a global extremum in the general quadratic problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信