基于动态更新区域的模因算法在2013 CEC实参数单目标优化专题会议及竞赛中的应用

Benjamin Lacroix, D. Molina, F. Herrera
{"title":"基于动态更新区域的模因算法在2013 CEC实参数单目标优化专题会议及竞赛中的应用","authors":"Benjamin Lacroix, D. Molina, F. Herrera","doi":"10.1109/CEC.2013.6557797","DOIUrl":null,"url":null,"abstract":"In this paper, we present a memetic algorithm which combines in a local search chaining framework, a steady-state genetic algorithm as evolutionary algorithm and a CMA-ES as local search method. It is an extension of an already presented algorithm which uses a region-based niching strategy and which has proven to be very efficient on real parameter optimisation problems. In this new version, we propose to dynamically update the niche size in order to make it less dependent to such critical parameter. In addition, we used an automatic configuration tool to optimise its parameters, and show that the optimised version of this algorithm is significantly better than with its default parameters. We tested this algorithm on the Special Session and Competition on Real-Parameter Optimization of the IEEE Congress on Evolutionary 2013 benchmark.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Dynamically updated region based memetic algorithm for the 2013 CEC Special Session and Competition on Real Parameter Single Objective Optimization\",\"authors\":\"Benjamin Lacroix, D. Molina, F. Herrera\",\"doi\":\"10.1109/CEC.2013.6557797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a memetic algorithm which combines in a local search chaining framework, a steady-state genetic algorithm as evolutionary algorithm and a CMA-ES as local search method. It is an extension of an already presented algorithm which uses a region-based niching strategy and which has proven to be very efficient on real parameter optimisation problems. In this new version, we propose to dynamically update the niche size in order to make it less dependent to such critical parameter. In addition, we used an automatic configuration tool to optimise its parameters, and show that the optimised version of this algorithm is significantly better than with its default parameters. We tested this algorithm on the Special Session and Competition on Real-Parameter Optimization of the IEEE Congress on Evolutionary 2013 benchmark.\",\"PeriodicalId\":211988,\"journal\":{\"name\":\"2013 IEEE Congress on Evolutionary Computation\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2013.6557797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文提出了一种模因算法,它结合了局部搜索链框架、作为进化算法的稳态遗传算法和作为局部搜索方法的CMA-ES算法。它是一种已经提出的算法的扩展,该算法使用基于区域的小生境策略,并已被证明在实际参数优化问题上非常有效。在这个新版本中,我们建议动态更新生态位大小,以使其对这些关键参数的依赖程度降低。此外,我们使用自动配置工具对其参数进行优化,并表明优化后的算法明显优于默认参数。我们在IEEE 2013年进化大会的实参数优化专题会议和竞赛中对该算法进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamically updated region based memetic algorithm for the 2013 CEC Special Session and Competition on Real Parameter Single Objective Optimization
In this paper, we present a memetic algorithm which combines in a local search chaining framework, a steady-state genetic algorithm as evolutionary algorithm and a CMA-ES as local search method. It is an extension of an already presented algorithm which uses a region-based niching strategy and which has proven to be very efficient on real parameter optimisation problems. In this new version, we propose to dynamically update the niche size in order to make it less dependent to such critical parameter. In addition, we used an automatic configuration tool to optimise its parameters, and show that the optimised version of this algorithm is significantly better than with its default parameters. We tested this algorithm on the Special Session and Competition on Real-Parameter Optimization of the IEEE Congress on Evolutionary 2013 benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信