药物设计的新学习方法

U. Ayan, G. Cansever
{"title":"药物设计的新学习方法","authors":"U. Ayan, G. Cansever","doi":"10.1109/SIU.2010.5651756","DOIUrl":null,"url":null,"abstract":"Although protien classification for Drug design is one of the most widely studied area in the past few years, it is difficult to obtain high accuracy. We used a feature weighting algorithm in order to represent the whole needed feature set. Because of scarce labeled data and high computational complexity of supervised learning methods, a new semi-supervised learning algorithm extended from Gaussian Random Field methodology combined with active query learning is developed. The proposed approach is applied to newly extracted data from DrugBank database contains nearly 4800 drug entries including FDA approved drugs and synthetic drug and 2640 non-drug proteins. We found that our new approach has better accuracy then the other traditional semi-supervised methods and lower computational complexity than the supervised methods.","PeriodicalId":152297,"journal":{"name":"2010 IEEE 18th Signal Processing and Communications Applications Conference","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New learning approach for drug design\",\"authors\":\"U. Ayan, G. Cansever\",\"doi\":\"10.1109/SIU.2010.5651756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although protien classification for Drug design is one of the most widely studied area in the past few years, it is difficult to obtain high accuracy. We used a feature weighting algorithm in order to represent the whole needed feature set. Because of scarce labeled data and high computational complexity of supervised learning methods, a new semi-supervised learning algorithm extended from Gaussian Random Field methodology combined with active query learning is developed. The proposed approach is applied to newly extracted data from DrugBank database contains nearly 4800 drug entries including FDA approved drugs and synthetic drug and 2640 non-drug proteins. We found that our new approach has better accuracy then the other traditional semi-supervised methods and lower computational complexity than the supervised methods.\",\"PeriodicalId\":152297,\"journal\":{\"name\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2010.5651756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 18th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2010.5651756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

药物设计中的蛋白质分类是近年来研究最为广泛的领域之一,但其准确性难以保证。为了表示所需的整个特征集,我们使用了特征加权算法。针对监督学习方法中标记数据稀缺和计算复杂度高的缺点,提出了一种基于高斯随机场方法的半监督学习算法,并结合主动查询学习。该方法应用于从DrugBank数据库中新提取的数据,该数据库包含近4800个药物条目,包括FDA批准的药物和合成药物以及2640个非药物蛋白质。结果表明,该方法比传统的半监督方法具有更高的精度和更低的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New learning approach for drug design
Although protien classification for Drug design is one of the most widely studied area in the past few years, it is difficult to obtain high accuracy. We used a feature weighting algorithm in order to represent the whole needed feature set. Because of scarce labeled data and high computational complexity of supervised learning methods, a new semi-supervised learning algorithm extended from Gaussian Random Field methodology combined with active query learning is developed. The proposed approach is applied to newly extracted data from DrugBank database contains nearly 4800 drug entries including FDA approved drugs and synthetic drug and 2640 non-drug proteins. We found that our new approach has better accuracy then the other traditional semi-supervised methods and lower computational complexity than the supervised methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信