基于视觉注意的目标跟踪

Mingqiang Lin, Houde Dai
{"title":"基于视觉注意的目标跟踪","authors":"Mingqiang Lin, Houde Dai","doi":"10.1109/ICINFA.2016.7832119","DOIUrl":null,"url":null,"abstract":"Humans have the capability to quickly prioritize external visual stimuli and localize their most interest in a scene. Inspired by this mechanism, we propose a robust object tracking algorithm based on visual attention. We fuse motion feature and color feature to estimate the target state under the guidance of saliency map. Principal Component Analysis method is used to compute saliency feature based on the dense appearance model generated from the background templates. Motion feature is extracted by using the method which is a Bayesian decision rule for classification of background and foreground. Numerous experiments demonstrate the proposed method performs well against state-of-the-art tracking methods when dealing with illumination change, pose variation, occlusion, and background clutter situations.","PeriodicalId":389619,"journal":{"name":"2016 IEEE International Conference on Information and Automation (ICIA)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Object tracking based on visual attention\",\"authors\":\"Mingqiang Lin, Houde Dai\",\"doi\":\"10.1109/ICINFA.2016.7832119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans have the capability to quickly prioritize external visual stimuli and localize their most interest in a scene. Inspired by this mechanism, we propose a robust object tracking algorithm based on visual attention. We fuse motion feature and color feature to estimate the target state under the guidance of saliency map. Principal Component Analysis method is used to compute saliency feature based on the dense appearance model generated from the background templates. Motion feature is extracted by using the method which is a Bayesian decision rule for classification of background and foreground. Numerous experiments demonstrate the proposed method performs well against state-of-the-art tracking methods when dealing with illumination change, pose variation, occlusion, and background clutter situations.\",\"PeriodicalId\":389619,\"journal\":{\"name\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2016.7832119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2016.7832119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

人类有能力快速确定外部视觉刺激的优先级,并在一个场景中定位他们最感兴趣的地方。受此机制的启发,我们提出了一种基于视觉注意的鲁棒目标跟踪算法。在显著性图的指导下,融合运动特征和颜色特征对目标状态进行估计。基于背景模板生成的密集外观模型,采用主成分分析法计算显著性特征。运动特征提取方法采用贝叶斯决策规则对背景和前景进行分类。大量实验表明,该方法在处理光照变化、姿态变化、遮挡和背景杂波等情况时,能够很好地对抗当前最先进的跟踪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object tracking based on visual attention
Humans have the capability to quickly prioritize external visual stimuli and localize their most interest in a scene. Inspired by this mechanism, we propose a robust object tracking algorithm based on visual attention. We fuse motion feature and color feature to estimate the target state under the guidance of saliency map. Principal Component Analysis method is used to compute saliency feature based on the dense appearance model generated from the background templates. Motion feature is extracted by using the method which is a Bayesian decision rule for classification of background and foreground. Numerous experiments demonstrate the proposed method performs well against state-of-the-art tracking methods when dealing with illumination change, pose variation, occlusion, and background clutter situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信