{"title":"四旋翼飞行器鲁棒位置控制的无抖振滑模控制系统设计","authors":"Aydin Can, Harry Efstathiades, A. Montazeri","doi":"10.1109/NIR50484.2020.9290206","DOIUrl":null,"url":null,"abstract":"In this paper, the major components of an unmanned aerial vehicle (UAV), including the flight control system, mechanical design, as well as the embedded electronic systems are reported. The ultimate aim is to use the developed platform in nuclear environments for decommissioning applications. Due to the hazards and uncertainties present in these nuclear environments, a more basic control system may be unable to reliably control the UAV. Therefore, the main focus of this study is on the development of a robust multi-channel control system, based on sliding mode control (SMC), for nested position and attitude control of a quadrotor UAV in 3D space. The robustness of the control systems is evaluated under parameter disturbance in the form of payload uncertainties. The final developed platform shall be capable of autonomous Simultaneous Localisation and Mapping (SLAM), however, this will be the subject of a separate study.","PeriodicalId":274976,"journal":{"name":"2020 International Conference Nonlinearity, Information and Robotics (NIR)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Desing of a Chattering-Free Sliding Mode Control System for Robust Position Control of a Quadrotor\",\"authors\":\"Aydin Can, Harry Efstathiades, A. Montazeri\",\"doi\":\"10.1109/NIR50484.2020.9290206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the major components of an unmanned aerial vehicle (UAV), including the flight control system, mechanical design, as well as the embedded electronic systems are reported. The ultimate aim is to use the developed platform in nuclear environments for decommissioning applications. Due to the hazards and uncertainties present in these nuclear environments, a more basic control system may be unable to reliably control the UAV. Therefore, the main focus of this study is on the development of a robust multi-channel control system, based on sliding mode control (SMC), for nested position and attitude control of a quadrotor UAV in 3D space. The robustness of the control systems is evaluated under parameter disturbance in the form of payload uncertainties. The final developed platform shall be capable of autonomous Simultaneous Localisation and Mapping (SLAM), however, this will be the subject of a separate study.\",\"PeriodicalId\":274976,\"journal\":{\"name\":\"2020 International Conference Nonlinearity, Information and Robotics (NIR)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference Nonlinearity, Information and Robotics (NIR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NIR50484.2020.9290206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference Nonlinearity, Information and Robotics (NIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NIR50484.2020.9290206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Desing of a Chattering-Free Sliding Mode Control System for Robust Position Control of a Quadrotor
In this paper, the major components of an unmanned aerial vehicle (UAV), including the flight control system, mechanical design, as well as the embedded electronic systems are reported. The ultimate aim is to use the developed platform in nuclear environments for decommissioning applications. Due to the hazards and uncertainties present in these nuclear environments, a more basic control system may be unable to reliably control the UAV. Therefore, the main focus of this study is on the development of a robust multi-channel control system, based on sliding mode control (SMC), for nested position and attitude control of a quadrotor UAV in 3D space. The robustness of the control systems is evaluated under parameter disturbance in the form of payload uncertainties. The final developed platform shall be capable of autonomous Simultaneous Localisation and Mapping (SLAM), however, this will be the subject of a separate study.