利用单导联心电图的心率自动检测睡眠唤醒

Franz Ehrlich, Johannes Bender, Hagen Malberg, Miriam Goldammer
{"title":"利用单导联心电图的心率自动检测睡眠唤醒","authors":"Franz Ehrlich, Johannes Bender, Hagen Malberg, Miriam Goldammer","doi":"10.22489/CinC.2022.080","DOIUrl":null,"url":null,"abstract":"Arousals during sleep give deep insights into the patho-physiology of sleep disorders and sleep quality. Detecting arousals is a time-consuming process manually per-formed by a trained expert. The required measurement is performed on an inpatient basis and is uncomfortable for the patient. As arousals relate to the autonomic nervous system, they also reflect in the electrocardiogram, which is therefore a promising alternative biosignal. In this study, we developed a deep learning model for automatic detection of sleep arousals from heart rate. We developed our algorithm using 5323 recordings from the Sleep Heart Health Study. 1003 of them were held-out as test data. We derived RR intervals from the ECG and interpolated them into a 4 Hz signal. Next, we developed a convolutional neural network (CNN) for end-to-end event detection. Model output is a continuous arousal probabil-ity with a frequency of 1 Hz. The optimization resulted in a twelve-layer CNN that achieved a Cohens kappa of 0.47, an area under the precision-recall curve of 0.54 on hold-out test data. This study demonstrates the ability of machine learning to detect arousals during sleep from heart rate. As our approach uses only the heart rate, it is potentially trans-ferable to other signals, e.g. the photoplethysmogram.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Sleep Arousal Detection Using Heart Rate From a Single-Lead Electrocardiogram\",\"authors\":\"Franz Ehrlich, Johannes Bender, Hagen Malberg, Miriam Goldammer\",\"doi\":\"10.22489/CinC.2022.080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arousals during sleep give deep insights into the patho-physiology of sleep disorders and sleep quality. Detecting arousals is a time-consuming process manually per-formed by a trained expert. The required measurement is performed on an inpatient basis and is uncomfortable for the patient. As arousals relate to the autonomic nervous system, they also reflect in the electrocardiogram, which is therefore a promising alternative biosignal. In this study, we developed a deep learning model for automatic detection of sleep arousals from heart rate. We developed our algorithm using 5323 recordings from the Sleep Heart Health Study. 1003 of them were held-out as test data. We derived RR intervals from the ECG and interpolated them into a 4 Hz signal. Next, we developed a convolutional neural network (CNN) for end-to-end event detection. Model output is a continuous arousal probabil-ity with a frequency of 1 Hz. The optimization resulted in a twelve-layer CNN that achieved a Cohens kappa of 0.47, an area under the precision-recall curve of 0.54 on hold-out test data. This study demonstrates the ability of machine learning to detect arousals during sleep from heart rate. As our approach uses only the heart rate, it is potentially trans-ferable to other signals, e.g. the photoplethysmogram.\",\"PeriodicalId\":117840,\"journal\":{\"name\":\"2022 Computing in Cardiology (CinC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2022.080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

睡眠中的觉醒对睡眠障碍和睡眠质量的病理生理学有深入的了解。检测唤醒是一个耗时的过程,由训练有素的专家手动执行。所需的测量是在住院病人的基础上进行的,对病人来说是不舒服的。由于觉醒与自主神经系统有关,它们也反映在心电图上,因此是一种有前途的替代生物信号。在这项研究中,我们开发了一个深度学习模型,用于从心率自动检测睡眠唤醒。我们使用来自睡眠心脏健康研究的5323条记录开发了我们的算法,其中1003条作为测试数据。我们从心电图中得到RR间隔,并将其内插到4hz信号中。接下来,我们开发了一个卷积神经网络(CNN)用于端到端事件检测。模型输出是频率为1hz的连续唤醒概率。优化后的12层CNN的Cohens kappa值为0.47,在hold out测试数据上,准确率-召回率曲线下的面积为0.54。这项研究证明了机器学习能够通过心率检测睡眠期间的觉醒。由于我们的方法只使用心率,它有可能转化为其他信号,例如光电容积描记图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Sleep Arousal Detection Using Heart Rate From a Single-Lead Electrocardiogram
Arousals during sleep give deep insights into the patho-physiology of sleep disorders and sleep quality. Detecting arousals is a time-consuming process manually per-formed by a trained expert. The required measurement is performed on an inpatient basis and is uncomfortable for the patient. As arousals relate to the autonomic nervous system, they also reflect in the electrocardiogram, which is therefore a promising alternative biosignal. In this study, we developed a deep learning model for automatic detection of sleep arousals from heart rate. We developed our algorithm using 5323 recordings from the Sleep Heart Health Study. 1003 of them were held-out as test data. We derived RR intervals from the ECG and interpolated them into a 4 Hz signal. Next, we developed a convolutional neural network (CNN) for end-to-end event detection. Model output is a continuous arousal probabil-ity with a frequency of 1 Hz. The optimization resulted in a twelve-layer CNN that achieved a Cohens kappa of 0.47, an area under the precision-recall curve of 0.54 on hold-out test data. This study demonstrates the ability of machine learning to detect arousals during sleep from heart rate. As our approach uses only the heart rate, it is potentially trans-ferable to other signals, e.g. the photoplethysmogram.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信