具有成本效益和可靠性的云存储

Yongmei Wei, Y. W. Foo
{"title":"具有成本效益和可靠性的云存储","authors":"Yongmei Wei, Y. W. Foo","doi":"10.1109/CLOUD.2014.132","DOIUrl":null,"url":null,"abstract":"The project aims to provide a scalable, reliable and cost effective cloud storage solution based on a Low Density Parity Check (LDPC) code-based framework. The novelties of the project lie in the following aspects. Firstly, the proposed framework utilizes a new technique called dynamic parameterization so that the existing resources can be used more efficiently. Secondly, a tailored error correction code with localized property is specifically designed to minimize the cost occurred during encoding and decoding for the distributed storage system. Thirdly, a neuroevolution approach is proposed, combining artificial neural network learning algorithm with evolutionary method, to develop predictive models for dynamic resource allocation and performance optimization.","PeriodicalId":288542,"journal":{"name":"2014 IEEE 7th International Conference on Cloud Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Cost-Effective and Reliable Cloud Storage\",\"authors\":\"Yongmei Wei, Y. W. Foo\",\"doi\":\"10.1109/CLOUD.2014.132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The project aims to provide a scalable, reliable and cost effective cloud storage solution based on a Low Density Parity Check (LDPC) code-based framework. The novelties of the project lie in the following aspects. Firstly, the proposed framework utilizes a new technique called dynamic parameterization so that the existing resources can be used more efficiently. Secondly, a tailored error correction code with localized property is specifically designed to minimize the cost occurred during encoding and decoding for the distributed storage system. Thirdly, a neuroevolution approach is proposed, combining artificial neural network learning algorithm with evolutionary method, to develop predictive models for dynamic resource allocation and performance optimization.\",\"PeriodicalId\":288542,\"journal\":{\"name\":\"2014 IEEE 7th International Conference on Cloud Computing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 7th International Conference on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD.2014.132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2014.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

该项目旨在提供基于低密度奇偶校验(LDPC)代码框架的可扩展、可靠且经济高效的云存储解决方案。本项目的新颖之处在于以下几个方面。首先,该框架采用了一种新的动态参数化技术,使现有资源得到更有效的利用。其次,针对分布式存储系统,设计了具有局部化特性的定制纠错码,最大限度地降低了编解码过程中的成本。第三,提出了一种神经进化方法,将人工神经网络学习算法与进化方法相结合,建立了动态资源分配和性能优化的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Cost-Effective and Reliable Cloud Storage
The project aims to provide a scalable, reliable and cost effective cloud storage solution based on a Low Density Parity Check (LDPC) code-based framework. The novelties of the project lie in the following aspects. Firstly, the proposed framework utilizes a new technique called dynamic parameterization so that the existing resources can be used more efficiently. Secondly, a tailored error correction code with localized property is specifically designed to minimize the cost occurred during encoding and decoding for the distributed storage system. Thirdly, a neuroevolution approach is proposed, combining artificial neural network learning algorithm with evolutionary method, to develop predictive models for dynamic resource allocation and performance optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信