{"title":"SAMoD:使用分散强化学习的按需共享自主移动性","authors":"Maxime Guériau, Ivana Dusparic","doi":"10.1109/ITSC.2018.8569608","DOIUrl":null,"url":null,"abstract":"Shared mobility-on-demand systems can improve the efficiency of urban mobility through reduced vehicle ownership and parking demand. However, some issues in their implementations remain open, most notably the issue of rebalancing non-occupied vehicles to meet geographically uneven demand, as is, for example, the case during the rush hour. This is somewhat alleviated by the prospect of autonomous mobility-on-demand systems, where autonomous vehicles can relocate themselves; however, the proposed relocation strategies are still centralized and assume all vehicles are a part of the same fleet. Furthermore, ride-sharing is not considered, which also has an impact on rebalancing, as already occupied vehicles can also potentially be available to serve new requests simultaneously. In this paper we propose a reinforcement learning-based decentralized approach to vehicle relocation as well as ride request assignment in shared mobility-on-demand systems. Each vehicle autonomously learns its behaviour, which includes both rebalancing and selecting which requests to serve, based on its local current and observed historical demand. We evaluate the approach using data on taxi use in New York City, first serving a single request by a vehicle at a time, and then introduce ride-sharing to evaluate its impact on the learnt rebalancing and assignment behaviour.","PeriodicalId":395239,"journal":{"name":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"SAMoD: Shared Autonomous Mobility-on-Demand using Decentralized Reinforcement Learning\",\"authors\":\"Maxime Guériau, Ivana Dusparic\",\"doi\":\"10.1109/ITSC.2018.8569608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shared mobility-on-demand systems can improve the efficiency of urban mobility through reduced vehicle ownership and parking demand. However, some issues in their implementations remain open, most notably the issue of rebalancing non-occupied vehicles to meet geographically uneven demand, as is, for example, the case during the rush hour. This is somewhat alleviated by the prospect of autonomous mobility-on-demand systems, where autonomous vehicles can relocate themselves; however, the proposed relocation strategies are still centralized and assume all vehicles are a part of the same fleet. Furthermore, ride-sharing is not considered, which also has an impact on rebalancing, as already occupied vehicles can also potentially be available to serve new requests simultaneously. In this paper we propose a reinforcement learning-based decentralized approach to vehicle relocation as well as ride request assignment in shared mobility-on-demand systems. Each vehicle autonomously learns its behaviour, which includes both rebalancing and selecting which requests to serve, based on its local current and observed historical demand. We evaluate the approach using data on taxi use in New York City, first serving a single request by a vehicle at a time, and then introduce ride-sharing to evaluate its impact on the learnt rebalancing and assignment behaviour.\",\"PeriodicalId\":395239,\"journal\":{\"name\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2018.8569608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2018.8569608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SAMoD: Shared Autonomous Mobility-on-Demand using Decentralized Reinforcement Learning
Shared mobility-on-demand systems can improve the efficiency of urban mobility through reduced vehicle ownership and parking demand. However, some issues in their implementations remain open, most notably the issue of rebalancing non-occupied vehicles to meet geographically uneven demand, as is, for example, the case during the rush hour. This is somewhat alleviated by the prospect of autonomous mobility-on-demand systems, where autonomous vehicles can relocate themselves; however, the proposed relocation strategies are still centralized and assume all vehicles are a part of the same fleet. Furthermore, ride-sharing is not considered, which also has an impact on rebalancing, as already occupied vehicles can also potentially be available to serve new requests simultaneously. In this paper we propose a reinforcement learning-based decentralized approach to vehicle relocation as well as ride request assignment in shared mobility-on-demand systems. Each vehicle autonomously learns its behaviour, which includes both rebalancing and selecting which requests to serve, based on its local current and observed historical demand. We evaluate the approach using data on taxi use in New York City, first serving a single request by a vehicle at a time, and then introduce ride-sharing to evaluate its impact on the learnt rebalancing and assignment behaviour.