基于Fisher流形学习的头部姿态估计

Longbin Chen, Lei Zhang, Yuxiao Hu, M. Li, H. Zhang
{"title":"基于Fisher流形学习的头部姿态估计","authors":"Longbin Chen, Lei Zhang, Yuxiao Hu, M. Li, H. Zhang","doi":"10.1109/AMFG.2003.1240844","DOIUrl":null,"url":null,"abstract":"Here, we propose a new learning strategy for head pose estimation. Our approach uses nonlinear interpolation to estimate the head pose using the learning result from face images of two head poses. Advantage of our method to regression method is that it only requires training images of two head poses and better generalization ability. It outperforms existed methods, such as regression and multiclass classification method, on both synthesis and real face images. Average head pose estimation error of yaw rotation is about 4/sup 0/, which proves that our method is effective in head pose estimation.","PeriodicalId":388409,"journal":{"name":"2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":"{\"title\":\"Head pose estimation using Fisher Manifold learning\",\"authors\":\"Longbin Chen, Lei Zhang, Yuxiao Hu, M. Li, H. Zhang\",\"doi\":\"10.1109/AMFG.2003.1240844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we propose a new learning strategy for head pose estimation. Our approach uses nonlinear interpolation to estimate the head pose using the learning result from face images of two head poses. Advantage of our method to regression method is that it only requires training images of two head poses and better generalization ability. It outperforms existed methods, such as regression and multiclass classification method, on both synthesis and real face images. Average head pose estimation error of yaw rotation is about 4/sup 0/, which proves that our method is effective in head pose estimation.\",\"PeriodicalId\":388409,\"journal\":{\"name\":\"2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMFG.2003.1240844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMFG.2003.1240844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

摘要

在此,我们提出了一种新的头部姿态估计学习策略。我们的方法使用非线性插值来估计头部姿势,使用两个头部姿势的人脸图像的学习结果。与回归方法相比,该方法的优点是只需要两个头部姿态的训练图像,泛化能力较好。无论在合成人脸图像还是真实人脸图像上,该方法都优于现有的回归和多类分类方法。偏航旋转的平均头姿估计误差约为4/sup /,证明了该方法在头姿估计中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Head pose estimation using Fisher Manifold learning
Here, we propose a new learning strategy for head pose estimation. Our approach uses nonlinear interpolation to estimate the head pose using the learning result from face images of two head poses. Advantage of our method to regression method is that it only requires training images of two head poses and better generalization ability. It outperforms existed methods, such as regression and multiclass classification method, on both synthesis and real face images. Average head pose estimation error of yaw rotation is about 4/sup 0/, which proves that our method is effective in head pose estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信