使用马尔可夫随机场模型映射动态环境

Hongjun Li, M. Barão, Luís Rato
{"title":"使用马尔可夫随机场模型映射动态环境","authors":"Hongjun Li, M. Barão, Luís Rato","doi":"10.23919/IConAC.2018.8749092","DOIUrl":null,"url":null,"abstract":"This paper focuses on dynamic environments for mobile robots and proposes a new mapping method combining hidden Markov models (HMMs) and Markov random fields (MRFs). Grid cells are used to represent the dynamic environment. The state change of every grid cell is modelled by an HMM with an unknown transition matrix. MRFs are applied to consider the dependence between different transition matrices. The unknown parameters are learnt from not only the corresponding observations but also its neighbours. Given the dependence, parameter maps are smooth. Expectation maximization (EM) is applied to obtain the best parameters from observations. Finally, a simulation is done to evaluate the proposed method.","PeriodicalId":121030,"journal":{"name":"2018 24th International Conference on Automation and Computing (ICAC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mapping dynamic environments using Markov random field models\",\"authors\":\"Hongjun Li, M. Barão, Luís Rato\",\"doi\":\"10.23919/IConAC.2018.8749092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on dynamic environments for mobile robots and proposes a new mapping method combining hidden Markov models (HMMs) and Markov random fields (MRFs). Grid cells are used to represent the dynamic environment. The state change of every grid cell is modelled by an HMM with an unknown transition matrix. MRFs are applied to consider the dependence between different transition matrices. The unknown parameters are learnt from not only the corresponding observations but also its neighbours. Given the dependence, parameter maps are smooth. Expectation maximization (EM) is applied to obtain the best parameters from observations. Finally, a simulation is done to evaluate the proposed method.\",\"PeriodicalId\":121030,\"journal\":{\"name\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IConAC.2018.8749092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 24th International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IConAC.2018.8749092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对移动机器人的动态环境,提出了一种将隐马尔可夫模型(hmm)和马尔可夫随机场(mrf)相结合的映射方法。网格单元用于表示动态环境。每个网格单元的状态变化用一个带有未知转移矩阵的隐马尔可夫模型来建模。利用磁流变函数来考虑不同转移矩阵之间的相关性。未知参数不仅可以从相应的观测值中学习,还可以从它的邻居中学习。给定依赖性,参数映射是平滑的。应用期望最大化(EM)方法从观测值中获得最佳参数。最后,通过仿真对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping dynamic environments using Markov random field models
This paper focuses on dynamic environments for mobile robots and proposes a new mapping method combining hidden Markov models (HMMs) and Markov random fields (MRFs). Grid cells are used to represent the dynamic environment. The state change of every grid cell is modelled by an HMM with an unknown transition matrix. MRFs are applied to consider the dependence between different transition matrices. The unknown parameters are learnt from not only the corresponding observations but also its neighbours. Given the dependence, parameter maps are smooth. Expectation maximization (EM) is applied to obtain the best parameters from observations. Finally, a simulation is done to evaluate the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信