激光雷达用导冷Tm,Ho:YLF MOPA的研制

M. Aoki, A. Sato, S. Ishii, K. Mizutani, K. Nakagawa
{"title":"激光雷达用导冷Tm,Ho:YLF MOPA的研制","authors":"M. Aoki, A. Sato, S. Ishii, K. Mizutani, K. Nakagawa","doi":"10.1117/12.2324636","DOIUrl":null,"url":null,"abstract":"The realization of three-dimensional global wind profile measurements provides significant benefits, such as improvement in the precision of numerical weather forecasts and understanding of the causes of climate change. A spaceborne coherent Doppler wind lidar is considered to be the most powerful instrument for providing accurate tropospheric wind profiles with high spatial and temporal resolutions. Conductively cooled techniques are also important for spaceborne lidar applications because they have several advantages over liquid cooling systems. The National Institute of Information and Communications Technology (NICT) is conducting feasibility studies of conductively cooled, Q-switched 2 μm Tm,Ho:YLF lasers to meet a requirement for a spaceborne CDWL. In recent years, the energy extraction efficiency from Tm,Ho:YLF lasers has been improved dramatically by reviewing the laser rod parameters and the resonator design. In this study, we report on a single-frequency, Q-switched Tm,Ho:YLF master oscillator power amplifier (MOPA), which meets the specifications of a spaceborne CDWL transmitter. The MOPA consists of a 3.86-mlong ring oscillator and a single-pass amplifier. For the single-pass amplification, an average output power of 3.95 W, which corresponds to a pulse energy of 131.7 mJ, was obtained at a pulse repetition frequency of 30 Hz and a cooling temperature of -40°C.","PeriodicalId":370971,"journal":{"name":"Asia-Pacific Remote Sensing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of conductively cooled Tm,Ho:YLF MOPA for lidar applications\",\"authors\":\"M. Aoki, A. Sato, S. Ishii, K. Mizutani, K. Nakagawa\",\"doi\":\"10.1117/12.2324636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The realization of three-dimensional global wind profile measurements provides significant benefits, such as improvement in the precision of numerical weather forecasts and understanding of the causes of climate change. A spaceborne coherent Doppler wind lidar is considered to be the most powerful instrument for providing accurate tropospheric wind profiles with high spatial and temporal resolutions. Conductively cooled techniques are also important for spaceborne lidar applications because they have several advantages over liquid cooling systems. The National Institute of Information and Communications Technology (NICT) is conducting feasibility studies of conductively cooled, Q-switched 2 μm Tm,Ho:YLF lasers to meet a requirement for a spaceborne CDWL. In recent years, the energy extraction efficiency from Tm,Ho:YLF lasers has been improved dramatically by reviewing the laser rod parameters and the resonator design. In this study, we report on a single-frequency, Q-switched Tm,Ho:YLF master oscillator power amplifier (MOPA), which meets the specifications of a spaceborne CDWL transmitter. The MOPA consists of a 3.86-mlong ring oscillator and a single-pass amplifier. For the single-pass amplification, an average output power of 3.95 W, which corresponds to a pulse energy of 131.7 mJ, was obtained at a pulse repetition frequency of 30 Hz and a cooling temperature of -40°C.\",\"PeriodicalId\":370971,\"journal\":{\"name\":\"Asia-Pacific Remote Sensing\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2324636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2324636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实现三维全球风廓线测量提供了显著的好处,例如提高数值天气预报的精度和了解气候变化的原因。星载相干多普勒风激光雷达被认为是提供高时空分辨率对流层风廓线的最有力仪器。传导冷却技术对星载激光雷达应用也很重要,因为它们比液体冷却系统有几个优势。美国国家信息和通信技术研究所(NICT)正在进行传导冷却、q开关2 μm Tm、Ho:YLF激光器的可行性研究,以满足星载CDWL的要求。近年来,通过对激光棒参数和谐振腔设计的研究,大大提高了Tm,Ho:YLF激光器的能量提取效率。在这项研究中,我们报告了一种单频,q开关Tm,Ho:YLF主振荡器功率放大器(MOPA),它符合星载CDWL发射机的规格。MOPA由一个3.86米长的环形振荡器和一个单通放大器组成。当脉冲重复频率为30 Hz,冷却温度为-40℃时,单通放大的平均输出功率为3.95 W,对应的脉冲能量为131.7 mJ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of conductively cooled Tm,Ho:YLF MOPA for lidar applications
The realization of three-dimensional global wind profile measurements provides significant benefits, such as improvement in the precision of numerical weather forecasts and understanding of the causes of climate change. A spaceborne coherent Doppler wind lidar is considered to be the most powerful instrument for providing accurate tropospheric wind profiles with high spatial and temporal resolutions. Conductively cooled techniques are also important for spaceborne lidar applications because they have several advantages over liquid cooling systems. The National Institute of Information and Communications Technology (NICT) is conducting feasibility studies of conductively cooled, Q-switched 2 μm Tm,Ho:YLF lasers to meet a requirement for a spaceborne CDWL. In recent years, the energy extraction efficiency from Tm,Ho:YLF lasers has been improved dramatically by reviewing the laser rod parameters and the resonator design. In this study, we report on a single-frequency, Q-switched Tm,Ho:YLF master oscillator power amplifier (MOPA), which meets the specifications of a spaceborne CDWL transmitter. The MOPA consists of a 3.86-mlong ring oscillator and a single-pass amplifier. For the single-pass amplification, an average output power of 3.95 W, which corresponds to a pulse energy of 131.7 mJ, was obtained at a pulse repetition frequency of 30 Hz and a cooling temperature of -40°C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信