{"title":"并网逆变器稳定性分析中基于长度可伸缩的长传输电缆阻抗建模方法","authors":"Weihua Zhou, Yanbo Wang, Zhe Chen","doi":"10.1109/SPEC.2018.8635872","DOIUrl":null,"url":null,"abstract":"This paper presents an impedance-based modelling method for length-scalable long transmission cable (LTC), which is able to assess influence of LTC on stability of grid-connected inverter (GCI). Electrical parameters of power cable in per-unit-length (p.u.l.) are first extracted from the measured terminal short-circuited and open-circuited admittances. Then, the terminal admittance of power cable in different length can be derived on the basis of the obtained p.u.l. parameters. Finally, a decoupled two-port circuit model is established for the LTC using the derived terminal admittance. Simulation results are given to validate effectiveness of the proposed impedance-based modelling method for LTC. The proposed impedance-based modelling method is able to avoid repetitive terminal impedance measurement. Also, the proposed model is able to support impedance-based stability criterion for GCI with length-scalable LTC.","PeriodicalId":335893,"journal":{"name":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Impedance-Based Modelling Method for Length-Scalable Long Transmission Cable for Stability Analysis of Grid-Connected Inverter\",\"authors\":\"Weihua Zhou, Yanbo Wang, Zhe Chen\",\"doi\":\"10.1109/SPEC.2018.8635872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an impedance-based modelling method for length-scalable long transmission cable (LTC), which is able to assess influence of LTC on stability of grid-connected inverter (GCI). Electrical parameters of power cable in per-unit-length (p.u.l.) are first extracted from the measured terminal short-circuited and open-circuited admittances. Then, the terminal admittance of power cable in different length can be derived on the basis of the obtained p.u.l. parameters. Finally, a decoupled two-port circuit model is established for the LTC using the derived terminal admittance. Simulation results are given to validate effectiveness of the proposed impedance-based modelling method for LTC. The proposed impedance-based modelling method is able to avoid repetitive terminal impedance measurement. Also, the proposed model is able to support impedance-based stability criterion for GCI with length-scalable LTC.\",\"PeriodicalId\":335893,\"journal\":{\"name\":\"2018 IEEE 4th Southern Power Electronics Conference (SPEC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 4th Southern Power Electronics Conference (SPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEC.2018.8635872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2018.8635872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impedance-Based Modelling Method for Length-Scalable Long Transmission Cable for Stability Analysis of Grid-Connected Inverter
This paper presents an impedance-based modelling method for length-scalable long transmission cable (LTC), which is able to assess influence of LTC on stability of grid-connected inverter (GCI). Electrical parameters of power cable in per-unit-length (p.u.l.) are first extracted from the measured terminal short-circuited and open-circuited admittances. Then, the terminal admittance of power cable in different length can be derived on the basis of the obtained p.u.l. parameters. Finally, a decoupled two-port circuit model is established for the LTC using the derived terminal admittance. Simulation results are given to validate effectiveness of the proposed impedance-based modelling method for LTC. The proposed impedance-based modelling method is able to avoid repetitive terminal impedance measurement. Also, the proposed model is able to support impedance-based stability criterion for GCI with length-scalable LTC.