基于光谱探针的砷化镓材料光折变响应时间测量

Qing Yang, Fei Yin, Tao Wang, Guilong Gao, Kai He, Xin Yan
{"title":"基于光谱探针的砷化镓材料光折变响应时间测量","authors":"Qing Yang, Fei Yin, Tao Wang, Guilong Gao, Kai He, Xin Yan","doi":"10.1117/12.2586950","DOIUrl":null,"url":null,"abstract":"The ultrafast all-optical solid-state framing camera(UASFC) technique is a new diagnostic method based on the semiconductor photorefractive effect. The ultra-fast response characteristics of this method are mainly determined by the response time of the semiconductor material's photorefractive index change. How to quickly and accurately measure the photorefractive index response time of semiconductor materials is an important step in the development of all-optical solid ultra-fast diagnostic chip. In this paper, the 100fs pulsed laser is divided into two beams. One of which is used as excitation light to generate pulsed X-ray source; the other beam is measured as a spectral probe light. Through the test of GaAs material, the response time of the refractive index change of GaAs material was less than 5ps, which laid a foundation for further optimization experiment and accurate measurement.","PeriodicalId":370739,"journal":{"name":"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GaAs material photorefractive response time measurement based on spectral probe\",\"authors\":\"Qing Yang, Fei Yin, Tao Wang, Guilong Gao, Kai He, Xin Yan\",\"doi\":\"10.1117/12.2586950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ultrafast all-optical solid-state framing camera(UASFC) technique is a new diagnostic method based on the semiconductor photorefractive effect. The ultra-fast response characteristics of this method are mainly determined by the response time of the semiconductor material's photorefractive index change. How to quickly and accurately measure the photorefractive index response time of semiconductor materials is an important step in the development of all-optical solid ultra-fast diagnostic chip. In this paper, the 100fs pulsed laser is divided into two beams. One of which is used as excitation light to generate pulsed X-ray source; the other beam is measured as a spectral probe light. Through the test of GaAs material, the response time of the refractive index change of GaAs material was less than 5ps, which laid a foundation for further optimization experiment and accurate measurement.\",\"PeriodicalId\":370739,\"journal\":{\"name\":\"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2586950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2586950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超快全光固态分幅相机(UASFC)技术是一种基于半导体光折变效应的新型诊断方法。该方法的超快速响应特性主要取决于半导体材料光折射率变化的响应时间。如何快速准确地测量半导体材料的光折射率响应时间是开发全光固体超快速诊断芯片的重要一步。本文将100fs脉冲激光器分成两束。其中一种作为激发光产生脉冲x射线源;另一束被测量为光谱探测光。通过对GaAs材料的测试,GaAs材料折射率变化的响应时间小于5ps,为进一步优化实验和精确测量奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GaAs material photorefractive response time measurement based on spectral probe
The ultrafast all-optical solid-state framing camera(UASFC) technique is a new diagnostic method based on the semiconductor photorefractive effect. The ultra-fast response characteristics of this method are mainly determined by the response time of the semiconductor material's photorefractive index change. How to quickly and accurately measure the photorefractive index response time of semiconductor materials is an important step in the development of all-optical solid ultra-fast diagnostic chip. In this paper, the 100fs pulsed laser is divided into two beams. One of which is used as excitation light to generate pulsed X-ray source; the other beam is measured as a spectral probe light. Through the test of GaAs material, the response time of the refractive index change of GaAs material was less than 5ps, which laid a foundation for further optimization experiment and accurate measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信