非牛顿幂律流体在多孔外壳中的GPU加速晶格玻尔兹曼模拟

Mashnoon Islam, P. Nag, M. Molla
{"title":"非牛顿幂律流体在多孔外壳中的GPU加速晶格玻尔兹曼模拟","authors":"Mashnoon Islam, P. Nag, M. Molla","doi":"10.1063/5.0037577","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a numerical study of heat transfer in a square porous cavity filled with non-Newtonian power-law fluid. A Graphics Processing Unit (GPU) has been used to accelerate the numerical simulation, which uses the Multiple-Relaxation-Time (MRT) Lattice Boltzmann Method. A modified power-law model has been employed to characterize the flow of non-Newtonian fluids. The simulations have been conducted for the power-law index $n$ ranging from $(0.6 \\leq n \\leq 1.0)$, the Darcy number $Da$ ranging from $(10^{-3} \\leq Da \\leq 10^{-1})$ and the Rayleigh number $Ra$ ranging from $(10^3 \\leq Ra \\leq 10^5)$. Results show that the average Nusselt number ($\\overline{Nu}$) decreases with an increase in the value of $n$ while $\\overline{Nu}$ increases with an increase in the value of $Da$. Moreover, an increment in the value of $Ra$ leads to an increase in the average Nusselt number.","PeriodicalId":433621,"journal":{"name":"Proceedings of the 13th International Conference on Mechanical Engineering (ICME2019)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPU accelerated lattice Boltzmann simulation of non-Newtonian power-law fluid in a porous enclosure\",\"authors\":\"Mashnoon Islam, P. Nag, M. Molla\",\"doi\":\"10.1063/5.0037577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates a numerical study of heat transfer in a square porous cavity filled with non-Newtonian power-law fluid. A Graphics Processing Unit (GPU) has been used to accelerate the numerical simulation, which uses the Multiple-Relaxation-Time (MRT) Lattice Boltzmann Method. A modified power-law model has been employed to characterize the flow of non-Newtonian fluids. The simulations have been conducted for the power-law index $n$ ranging from $(0.6 \\\\leq n \\\\leq 1.0)$, the Darcy number $Da$ ranging from $(10^{-3} \\\\leq Da \\\\leq 10^{-1})$ and the Rayleigh number $Ra$ ranging from $(10^3 \\\\leq Ra \\\\leq 10^5)$. Results show that the average Nusselt number ($\\\\overline{Nu}$) decreases with an increase in the value of $n$ while $\\\\overline{Nu}$ increases with an increase in the value of $Da$. Moreover, an increment in the value of $Ra$ leads to an increase in the average Nusselt number.\",\"PeriodicalId\":433621,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Mechanical Engineering (ICME2019)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Mechanical Engineering (ICME2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0037577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Mechanical Engineering (ICME2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0037577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对充满非牛顿幂律流体的方形多孔腔内的传热进行了数值研究。图形处理单元(GPU)采用多重弛豫时间(MRT)晶格玻尔兹曼方法来加速数值模拟。一个修正的幂律模型被用来描述非牛顿流体的流动。对幂律指数$n$ ($(0.6 \leq n \leq 1.0)$)、达西数$Da$ ($(10^{-3} \leq Da \leq 10^{-1})$)和瑞利数$Ra$ ($(10^3 \leq Ra \leq 10^5)$)进行了模拟。结果表明,平均努塞尔数($\overline{Nu}$)随$n$值的增大而减小,$\overline{Nu}$随$Da$值的增大而增大。此外,$Ra$值的增加会导致平均努塞尔数的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU accelerated lattice Boltzmann simulation of non-Newtonian power-law fluid in a porous enclosure
This paper demonstrates a numerical study of heat transfer in a square porous cavity filled with non-Newtonian power-law fluid. A Graphics Processing Unit (GPU) has been used to accelerate the numerical simulation, which uses the Multiple-Relaxation-Time (MRT) Lattice Boltzmann Method. A modified power-law model has been employed to characterize the flow of non-Newtonian fluids. The simulations have been conducted for the power-law index $n$ ranging from $(0.6 \leq n \leq 1.0)$, the Darcy number $Da$ ranging from $(10^{-3} \leq Da \leq 10^{-1})$ and the Rayleigh number $Ra$ ranging from $(10^3 \leq Ra \leq 10^5)$. Results show that the average Nusselt number ($\overline{Nu}$) decreases with an increase in the value of $n$ while $\overline{Nu}$ increases with an increase in the value of $Da$. Moreover, an increment in the value of $Ra$ leads to an increase in the average Nusselt number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信