{"title":"基于量子点元胞自动机技术的改进型8:1复用器设计","authors":"","doi":"10.35940/ijrte.a3022.059120","DOIUrl":null,"url":null,"abstract":"A much-required breakthrough in the field of VLSI took place with the birth of Quantum-dot cellular automata (QCA) technology, an impressive amalgamation of Quantum Physics and Nanotechnology and acted as a possible replacement to the age-old semiconductor transistor-based designs (CMOS) with Boolean paradigm. In this paper, we aim at implementing this technology to build a robust 8:1 multiplexer that can help in building and developing many more digital logic circuits, from an already proposed 2:1 multiplexer. It has excellent efficiency with respect to least cell count, latency, space and power dissipation.","PeriodicalId":220909,"journal":{"name":"International Journal of Recent Technology and Engineering","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Improved 8:1 Multiplexer using Quantum-dot Cellular Automata Technology\",\"authors\":\"\",\"doi\":\"10.35940/ijrte.a3022.059120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A much-required breakthrough in the field of VLSI took place with the birth of Quantum-dot cellular automata (QCA) technology, an impressive amalgamation of Quantum Physics and Nanotechnology and acted as a possible replacement to the age-old semiconductor transistor-based designs (CMOS) with Boolean paradigm. In this paper, we aim at implementing this technology to build a robust 8:1 multiplexer that can help in building and developing many more digital logic circuits, from an already proposed 2:1 multiplexer. It has excellent efficiency with respect to least cell count, latency, space and power dissipation.\",\"PeriodicalId\":220909,\"journal\":{\"name\":\"International Journal of Recent Technology and Engineering\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Recent Technology and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35940/ijrte.a3022.059120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Recent Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijrte.a3022.059120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of Improved 8:1 Multiplexer using Quantum-dot Cellular Automata Technology
A much-required breakthrough in the field of VLSI took place with the birth of Quantum-dot cellular automata (QCA) technology, an impressive amalgamation of Quantum Physics and Nanotechnology and acted as a possible replacement to the age-old semiconductor transistor-based designs (CMOS) with Boolean paradigm. In this paper, we aim at implementing this technology to build a robust 8:1 multiplexer that can help in building and developing many more digital logic circuits, from an already proposed 2:1 multiplexer. It has excellent efficiency with respect to least cell count, latency, space and power dissipation.